Telairity-1: A Real Time H.264 High Definition Video Architecture

Richard Dickson
August 15, 2005
 Agenda

- Applications
- Chip architecture
- I/O architecture
- Processor architecture
- Performance
- Technology
- Silicon status
Telairity-1 Target Application

- **Targeted to demanding video applications**
 - H.264 real time, main profile, high definition encoding
 - Video servers
 - Broadcast encoders & Transcoders
 - Video editing & authoring
 - Video conferencing
 - Security & Surveillance

- **H.264 HD standard is replacement for MPEG2 HD**
 - Potential to cut bit-rate in half with same quality, 20Mbps to 10Mbps
 - This reduction in bit-rate takes significant additional compute power in S/W modules:
 - More Motion Estimation options than MPEG2
 - Context Adaptive Entropy encoder (CABAC) for a 15% bit rate reduction over MPEG2
Telairity-1 Single Chip Architecture

- Programmable loosely coupled MP in a single chip
 - 5 independent vector/scalar processors
 - 1 video controller
 - 1 DRAM controller, supports 5.3 GB/s I/O bandwidth

- Telairity-1 offers the smallest footprint & lowest cost for broadcast quality H.264 video compression
Telairity-1 I/O Architecture

- Processor P2
 - 64 bits
 - 5.3GB/s

- I/O Arbiter
 - 5.3GB/s

- Parallel Input Channel: 20 channels, 74.25 MHz
- Parallel Output Channel: 20 channels, 74.25 MHz
- 5-Serial Channels: 25 channels, 74.25/148.5 MHz

- DMA
 - 128 bits
 - 5.3GB/s

- SDRAM DDR2 8-Chips
Single Vector/Scalar Processor Features

- 4-vector pipes with independent hardware
- Independent Scalar Unit
- 128 KByte on-chip vector SRAM
- 4 KByte vector SRAM data cache
- 8 KByte scalar scratchpad memory
- 32 KByte instruction cache
Telairity-1 Instructions

Scalar Instructions
- Three-address scalar load and store instructions
- Memory addressing
 - Register, indexed, offset
 - Byte, doublet (2-bytes), quadlet (4-bytes)
- Arithmetic
 - Signed, unsigned, saturating
- Data types
 - 8/16/32-bit integer

Vector instructions
- Three-address vector load and store instructions
 - Vector length, vector starting address, chaining
- Memory addressing
 - Register, indexed, offset
 - Stride, skip
 - Byte, doublet
- Arithmetic
 - Signed, unsigned, saturating, carry in, mask
- Data types
 - 8/16-bit vector
One of Five Identical Processors on Telairity-1

- Vector
 - 44, 16-bit Functional Units
 - 2K Vector Registers
 - 512 VR/Pipe
 - 16-read 8-write
 - 16-bits

- Scalar
 - 6, 32-bit Functional Units
 - 8KB Scratch Memory
 - 2-read 1-write
 - 32-bits

- Instruction Unit
 - 256B Local Registers
 - 32-bits
 - 4KB V Cache
 - 32-bits
 - 32 KB I Cache
 - 32-bits
 - 64-bits

- DMA
 - 128-bits
 - 32-bits

- Other Processors

- 512 MB SDRAM Controller
 - 128-bits
 - 32-bits
Scalar Unit Details

- **2 Register Files**, each with:
 - 32, 32-bit registers
 - 3 read, 1 write

- **Scalar issue & execution units**:
 - 32-bit Single issue
 - 3 address
 - In order issue
 - In order completion

- **Vector Data Cache**:
 - 4KB, 4-way SA
 - 16 Byte line
 - Write through

- **Scratch memory**
 - 8KB

- **Instruction Cache**
 - 32KB, FA
 - Pre-fetch and lock
 - 2KB line
One Vector Pipe of A Four Pipe Unit

- **4 Vector pipes per processor**
- **Data Paths per pipe**
 - 4 reads, 2 writes
 - 2 loads, 1 store
 - Issue in order
 - Out of order completion
- **16 Vector registers per pipe**
 - Each vector register has 32, 16-bit elements
- **11 Functional units per pipe**
 - Adders
 - 8, 24-bit accumulators
 - MAC
 - 8, 40-bit accumulator
Processor VSRAM

- 12 Memory operations
 - 8 reads
 - 4 writes
- 128 memory banks
 - Any access can go to any bank
 - Automatic HW retry on bank conflicts
- Each bank 512x16-bits
- 1 R/W per bank
- 16 GB/s bandwidth
Performance

- **Vector & Scalar operations**
 - Four independent vector pipelines per processor
 - One single issue scalar pipeline per processor

- **Peak operations per cycle per processor**
 - 21, 16-bit operations per cycle
 - 8, 16-bit vector ops + 8 vector loads + 4 vector stores, 1, 32-bit scalar op

- **Peak operations per cycle per chip**
 - 105, 16-bit operations per cycle

- **Sustained operations per cycle per processor**
 - 666 sustained operations issued & completed in 40 cycles
 - 16.65, 16-bit operations per cycle per processor

- **Sustained operations per cycle per chip**
 - 83, 16-bit operations per cycle

- **668.25 MHz clock rate**
 - 9x multiple of 74.25MHz SMPTE 20 bit video standard

- **Total Sustained Chip performance of 55.5 GOPS/s**
H.264 Real Time HD Encoder Application: Comparison with other solutions

- **Other Processors**
 - 16 to 20 DSP chips + 6 FPGAs
 - 24 to 32 Multimedia chips + 6 FPGAs
 - 10 to 12 x86 processors + 12 to 24 FPGAs

- **Telairity-1**
 - 4 to 8 Telairity-1 chips + 1 small FPGA
 - 668 MHz
Application Program Profile for Real Time HD Encoding

<table>
<thead>
<tr>
<th>Telairity-1 H.264 programs</th>
<th>4 chips</th>
<th>8 chips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion Estimation</td>
<td>46%</td>
<td>55%</td>
</tr>
<tr>
<td>DCT & IDCT</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Loop Filter</td>
<td>16%</td>
<td>8%</td>
</tr>
<tr>
<td>Binarization & context modeling</td>
<td>25%</td>
<td>10%</td>
</tr>
<tr>
<td>Headroom</td>
<td>10%</td>
<td>25%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

8 chips gives better quality or lower bit rate
Telairity-1 Chip Technology

- **Fujitsu 90nm CMOS technology**
 - 1.25 volt core, 1.8 volt I/O

- **Die Size**
 - 9.5mm x 14.4mm
 - 1156 FCBGA package

- **Power**
 - 15 Watts typical

- **88 Million Transistors**
 - 41 Million RAM
 - 47 Million logic transistors
Chip Die Plot
Telairity-1 Silicon Status

- Chip taped out February ‘05
- First silicon May ‘05 and fully functional
- **Speed**
 - 668.25 MHz
- **Software development system**
 - 4 chips
 - Software tools
- **Encoder development system**
 - 8 chips
 - Encoder application software
 - Software tools
- **Availability**
 - Engineering Samples now
 - Production Q4 2005

www.telairity.com