A 1-GHz Configurable Processor Core
— MeP-h1 —

Takashi Miyamori, Takanori Tamai,
and Masato Uchiyama
SoC Research & Development Center,
TOSHIBA Corporation
Outline

- Background
- Pipeline Structure
- Bus Interface
- Implementation
Outline

- Background
- Pipeline Structure
- Bus Interface
- Implementation
Configurable Processor

- Customize a processor during RTL design
- Configurations
 - Cache config., Local RAM config., bus width, etc.
- Extensions
 - User customized instructions (DSP instruction extension)
 - Self-running hardware blocks (Hardware engines)

A simple controller
MeP-h1 Design Trade-off

High performance & high frequency
- Target: 1GHz@65nm

Configurable Processor
- Fully synthesizable
- ASIC standard design flow
 - 1-port synchronous SRAM
- A simple controller for extensions

Pipeline Design Issues
- Branch latency
- Local memory latency
- Extension i/f latency
Outline

- Background
- Pipeline Structure
- Bus Interface
- Implementation
Pipeline Structure

9 stages for load inst.

Processor core

Fetch & Decode

Branch predecode

I(Integer)-Pipe
M(Memory)-Pipe
A(Auxiliary)-Pipe
V(Variable)-Pipe

DSP inst. extension

HW engine extension
Instruction Fetch Unit

- Branch predecode & prefetch
 - No branch prediction mechanism
Branch Prefetch

- Branch penalty
 - Branch taken: 1 – 4 cycles (cf. 4 cycles w/o branch prefetch)
 - Branch not-taken: 0 cycles
- Repeat (loop) inst. iteration penalty: 0 cycles
Average branch penalty: 1.8 cycles

More than 80% of branch penalty is less than or equal 2 cycles
Load Data Forwarding

MeP-c3
- 5-stage pipeline

Load penalty = 1 cycle

MeP-h1

Clock adjustment

Load penalty = 2 cycles
Extension I/F Latency

- **MeP-c3**
 - ex. 350-400MHz@90nm
- **MeP-h1**
 - ex. 1GHz@65nm

→ Tightly coupled extensions

→ Loosely coupled extensions
Tightly / Loosely Coupled Pipelines

- DC
- GPRs
- ROB
- I-Pipe
- M-Pipe
- A-Pipe
- V-Pipe
- LA
- LD
- M1
- M2
- SB
- E1
- E2
- RB
- Bypass 1
- Bypass 2
- Processor core
- DSP inst. extension
- HW engine extension
- VD
- VE
- V1
- III
- Vn
- VC
- An
- AC
- A1
- A2
- A3
- III

Tightly coupled
Loosely coupled

Dashed line for loosely coupled component.
Structure of ROB and GPR

- **ROB** (Reorder buffer)
 - 8 entries
 - 4 write ports
 - 3 read ports

- **GPRs**
 - 32 bits x 16 words
 - 1 write port
 - 2 read ports
DSP Extension Interface

Processor Core

V-Pipe

• dsp Rn,Rm,code
Rn = func(Rn, Rm, code)

DSP inst. extension

add $8,4
lw $7,($8)
add $8,4

dsp0 $0,$1
dsp0 $2,$3
dsp0 $4,$5

Command
DC | VD | VE | V1 | V2 | V3 | VC | WB

M2 SB ROB
M1 LA LD ROB
E2 E1 ROB
RB ROB

Completion
Commit
Outline

- Background
- Pipeline Structure
- Bus Interface
- Implementation
SoC Architecture

- **MeP module**: MeP-h1 processor core, DMAC, Extensions
- **Global bus**: Based on OCP2.0
- **Local Bus**: MeP module
- **Host CPU bus**: Host CPU ex. ARM
- **Peripheral bus**: Peripherals
- **Bus bridge**: Debug module, MeP module
- **Control bus**: MeP module
- **Extensions**: MeP module
- **JTAG**: Debug module
- **PC trace**: Debug module, MeP module
- **Run control unit**: Debug module
- **Memory Controller**: SDRAM
- **SDRAM**: Memory Controller

HW module

Host CPU: ex. ARM
Bus Interface

- Based on OCP* 2.0
 - Split bus transaction
 - Single request burst
 - Posted write
 - Pipelined request and response
 - 2 outstanding requests
 - Master bus reset and slave bus reset

*) OCP: Open Core Protocol
Outline

- Background
- Pipeline Structure
- Bus Interface
- Implementation
Configurations

- **I$: 8KB, direct-mapped**
- **I-RAM: 4KB**
- **D$: 8KB, direct-mapped**
- **D-RAM: 4KB**
- **Bus width: 64 bits**
- **Debug function:**
 - Hardware breakpoints,
 - Single step
 - PC trace (8KB trace memory), etc.

Extensions

- **DSP instruction extension**
- **4 hardware engines**
First Implementation

- Toshiba 65nm CMOS process
- Size: 1.58 mm x 2.96 mm
- Gate counts: 250K gates (core only)
- Power consumption*
 about 1W @ 1GHz, w/o clock gating
 *) estimated by total of Tr. sizes and wire loads.
- Static Timing Analysis result
 Clock margin = 80 ps
 Critical path delay = 918 ps
 Total = 998 ps → 1GHz
Lab. Result

Voltage vs. Frequency (Room temp.)

Supply Voltage [V]

Frequency [MHz]
Conclusion

- Configurable processor aims to high performance & high operating frequency

- Pipeline design
 - Deeper pipeline stages
 - Branch predecode and prefetch
 - Relaxed local memory (SRAM) timing
 - Loosely coupled extensions using ROB

- First implementation
 - Fabricated by 65nm CMOS and can operate at 1GHz
Thank you!