Intel 8xx series and Paxville Xeon-MP Microprocessors

Jonathan Douglas
Intel Corporation

Thanks to: Justin Marquart, James Vogeltanz, Mike Grassi, DEG/BCG package design, Donald Parker & Benson Inkley for help in putting together this presentation.
Outline

- Why the move to multi-core
- Overview of 8xx series Pentium4
- Challenges in moving CPU infrastructure to multi-core
- Learning's from the 8xx series Pentium4 design
- Overview of Paxville-MP processor
- Going forward with multi-core designs
- Conclusion
Why rapid move to Dual-Core

- Single core designs hitting power wall.
 - Need more power efficient way to manage OS loading.
- Natural extension of software migration to multi-threaded apps.
- More threads in 1 core is complex and tax core resources heavily.
- Competitive response.
Overview of 8xx series
Pentium4 processor

- Dual-Core/Multi-Threaded Pentium®4 Processor on 90nm process
 - 2-1M caches, speeds to 3.2Ghz, support for overclocking, up to 4 threads.

- Shared 800Mhz quad-pumped FSB.
 - Independent bus tuning per agent

- Enhanced auto-halt and 2-state speed step power management
 - Independent events supported per core.
High level block diagram

System Bus

Decoder
Trace Cache
Rename/Alloc
uop Queues
Schedulers

FP RF
Integer RF

L1 D-Cache and D-TLB

BTB & I-TLB
BTB
Trace Cache
Rename/Alloc
uop Queues
Schedulers

FP RF
Integer RF

L1 D-Cache and D-TLB

Core-To-Core Communication
Zoom in on Front-Side Bus

Core0 Data
Core0 Drive = CoreNotDead AND Core0Owns Bus

GTL I/O Driver
C4 Bump
Socket Pin
Package Route

Core1 Data
Core1 Drive = CoreNotDead AND Core1Owns Bus
Why the shared bus design

- Time to market a critical factor
 - Leverages existing P4 core
 - Uses existing 775-LGA socket
- P4 core already has right feature set
 - P4 FSB already 4-way compliant.
 - Already architected with thread independent power management.
 - Already ‘HT’ so 2 cores = 4 threads
- Gives independent caches
 - Plus no extra latency to external memory.
1) Intel® Pentium® 4 Processor with HT Technology Extreme Edition 3.73GHz (2 MB L2 Cache, 1066 MHz FSB) and Intel® 925XE Express Chipset
2) Intel® Pentium® Processor Extreme Edition 840 (2x1 MB L2 Cache, 3.20 GHz, 800 MHz FSB, HT Technology) and Intel® 955X Express Chipset
Challenges in migrating to multi-core

- Rapid movement from single core design to multi-core design presented many complexities
 - Already existing platform hardware
 - Factory already populated with manufacturing hardware
 - Test database developed for single core
 - Tight package dimensions
 - Little power headroom left
Package issue

- Package design a huge challenge
 - More layers required (Just address/data alone is > 100 more signals)
 - Same package cavity and pinout – couldn’t grow.
 - New IHS (Integrated Heat Sink) required for thicker package
 - Power cap placement can’t be centered over both cores
 - Existing signals on 4 sides of core causes power bus routing voids.

- No logic outside core. Any needed logic must be in core. Lots of ‘special signal’ headaches like thermal diode, ODT (On-Die Termination).
Power constraints

- Existing platform dictated 1 power plane for both cores
 - Penalized for 2X leakage, required architecting a speed-step protocol
- 2 cores powering up & fully active cause large di/dt events
 - Required Voltage Regulator mods to grow headroom to 125A plus silver box restrictions
- Required BIOS change to boot to low voltage/frequency on performance parts.
 - BIOS initiates speedstep event to all threads after completion
2-core boot to full speed, weak power supply
Test issues

- Thousands of hours invested in single core coverage database
 - Copied core design a plus
 - Needed to add ‘core swap & kill’ hardware to reuse database
- Existing single core test can’t expose problems on core->core interaction
 - Voltage transients, thermal gradient
 - Some explicit dual core content required
Test flow example

Sort Die Independent

Screen/Speed Grade Core0

Switch Cores

Screen/Speed Grade Core1

Multi-Core Content Run

Check Power of 2 cores

Check Speed Step voltage

Snap to lowest Speed
Thermal issue

- Platforms support only 1 ADC for thermal monitoring
 - 2 cores can create many different thermal profiles
 - Diode temp to junction hot spot delta can vary depending on workload & core utilized
- Required thermal protection to be independent on both cores
Thermal gradients

Thermal Diode

Core0 only

Dual Core
Limitations of shared bus

- 2 loads on bus = less bus speed.
 - Plus 1M cache = more bus traffic. Double whammy.
- Difficult package design
 - ~2x traces to same number pins
- Thermal & electrical properties degrade.
 - Slow down penalizes both cores.
- Segregated die.
 - Test overhead. Slowest die constrains final product.
Overview of Paxville-MP processor

- Dual-Core/Multi-Threaded Xeon Processor on 90nm process
 - 2-2M caches, 667Mhz min FSB, up to 4 threads.
 - Platform still 4-P compatible for up to 16 threads per platform
- Dual bus platform – 2 CPU agents per bus
 - Only 1 load presented to system by CPU
- Enhanced auto-halt and 2-state speed step power management
 - Independent events supported per core.
Advantages of new Paxville design

- Single CPU load on bus. Allows faster bus, less electrical load.
 - 8 agents (16 threads) on top end platform
- Larger cache = less FSB bottlenecks
- Better package design
 - Fewer traces allows better power delivery
- Integrated die (monolithic)
- Consolidated bus logic allows test enhancements
Paxville consolidate bus

- Core0 Data
- Core1 Data
- Core1 I/O Clock
- Core1 OwnsBus
- Core0 I/O Clock
- Core0 OwnsBus
- Core0/Core1 Dead
- DataMux & Sync
- GTL I/O Driver
- Package Route
- Socket Pin

Combined I/O Logic:
- a1
- b1
- a2
- b2
- a3
- a4
Challenges with Paxville design

- Degraded I/O timing with shared bus
 - Requires extra logic & routing but must be compatible to existing bus timing.
 - Requires circuit tricks for quad pumped bus.

- Enhancements to validation tools
 - 8xx series treated as 2 independent CPUs.
 Paxville is integrated – 1 die.

- Additional complexity in test infrastructure.
 - New test modes & consolidated bus logic.
Going forward with multi-core

- Solving bus bottlenecks.
- Integrate next level cache for less bus traffic.
 - Downside is higher latency on cache misses.
 - Upside is lower pin count & can stay with a flexible bus architecture
 - Cache thrashing by multiple cores an issue if size isn’t large enough – swamps bus again.
- ‘Point-to-point’ busses & memory controllers
 - Upside is no bus traffic collisions
 - Downsides are being locked into memory protocol and a huge pin count increase.
Going forward with multi-core

- Solving power issues..
- Need better power state management
 - Single voltage plane is an issue – can’t drop leakage on inactive cores
 - Need more intelligence in controller
- Segment products with power in mind
 - Typically done more now on speed/feature set.
 - Can microprocessor be ‘tuned’ for a power segment.
SpeedStep protocol

Core Activity over time

<table>
<thead>
<tr>
<th>Core0 high activity</th>
<th>Core0 asleep</th>
<th>Core0 low activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core1 asleep</td>
<td>Core1 high activity</td>
<td>Core1 asleep</td>
</tr>
<tr>
<td>Core1 high activity</td>
<td>Core1 asleep</td>
<td>Core1 high activity</td>
</tr>
<tr>
<td>High voltage</td>
<td>Low voltage</td>
<td>High voltage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low voltage</td>
</tr>
</tbody>
</table>

Limited opportunities to reduce power, much harder with even more cores
Going forward with multi-core

- Core counts will continue to increase.
 - Higher threaded applications give opportunity to have better power / performance.
 - Power is wasted when a core that isn’t working on a thread is alive, but performance is wasted if OS has to continually swap out threads.

- Expect that logic to ‘glue’ cores together will become as critical as the core
 - Need lots of sophistication to take full advantage of a high core count
 - Need busses capable of handling the high traffic to memory