HOTCHIPS 2006
Heterogeneous multiprocessing for efficient multi-standard high definition video decoding
Outline

• Multi-Standard Video Decoder overview
 – Internal system architecture

• Design challenges
 – CPU performance
 – Customized TriMedia VLIW core
 – Programmable pixel processing

• Results & Conclusion
MSVD charter

• Integrated video decoding solution for consumer application
 – Support for common video compression formats in the consumer world
 – Up to high definition resolution
 – Concurrent stream decoding
 – Supporting consumer encoded ‘almost compliant’ material
 – Advanced trick modes
 – Advanced post processing for best in class picture quality
 – Competitive against fully hardwired solutions
MSVD system feature list (1)

• Supported formats
 – H.264 (aka MPEG4 AVC or MPEG4 part 10) High Profile @ Level4 (1920x1080 60Hz interlaced or 1080i, 1280x720 60Hz progressive or 720p)
 – VC-1 (WM9) Advanced Profile @ Level 3 (1080i, 720p)
 – MPEG4 Advanced Simple Profile @ Level3 (1080i, 720p)
 – DivX 3.11/ 4.x.x / 5.x.x / 6 HD profile
 – MPEG1/2 Main Profile @ High Level (1080i, 720p)
 – DV / DVCAM / DVCPRO-25 @ 25 Mbits/s
 – JPEG EXIF2.2 format up to 8192x8192

• Video post-processing
 – Deblocking
 – Deringing
MSVD system overview

- **Control / parsing in firmware**
 - Running on embedded controller
 - Low amount of control glue

- **HW assistance for stream parsing**
 - Performance independent of bit rate

- **Autonomous pixel crunching**
 - Using a set of dedicated units
 - HD level performance at consumer cost
MSVD system overview

• Benefits
 – Good range of standard decoders in limited Si area
 – High decoding throughput
 – Easier support for non compliant streams (PC world)
 – Field upgradeable firmware
 – Possibility to tweak error concealment / playability
 – Possibility to expand supported formats
 • If using similar pixel crunching functions as already supported codecs (e.g. MPEG4 variants: DivX/Xvid)
 – Scalable
 • Reduced set of standard
 • Low operating frequency for low power standard definition decoding
 • Choice of embedded controller
Outline

• Multi-Standard Video Decoder overview
 – Internal system architecture

• Design challenges
 – CPU performance
 – Customized TriMedia VLIW core
 – Programmable pixel processing

• Results & Conclusion
CPU performance - Requirements (1)

• Origin of coding efficiency improvements
 – Deeper picture segmentation
 • Down to 4x4 blocks
 – Sophisticated prediction scheme
 • Most symbols are predicted
 • Adaptive selection of predictor for each symbol
 – Advanced entropy coding techniques
 • Arithmetic coding / Multiplication of Huffman tables (VC-1)
 • Most symbols are now predicted and not simply transmitted in bit stream (i.e. MB type/CBP/QP)

• Consequence
 – More symbols to decode
 – Steep increase in computation and data manipulation required for decoding a symbol
 – Example motion vectors prediction
 • 1 load / 1 store per MV, up to 4 MVs per MB in MPEG2
 • 12 load / 3 store / 3 compare per MV, up to 32 MV’s per MB in H.264
CPU performance - Requirements (2)

• High impact on stream parsing complexity
 – 8x more performance required from MPEG2 to H.264

• Parsing Performance requirements for 1080i
 – MB rate: 245760 MB/s
 • 1354 cycles / MB @ 333MHz
 – 6 cycles/symbol (incl. 384/2 transform coefficient)
 • Complexity (excluding transform coefficient parsing)
 – 700 load / store operations / MB for context manipulation
 – Total of 3000 ops / MB
 – High level of execution hazards (100 branches)
CPU performance - TM Config

- Configurable TriMedia processor
 - Based on TM3270 architecture
 - 5 issue slot VLIW architecture
 - 35 functional units
 - 9 stage pipeline
 - Configurable
 - Instruction cache: 32kB
 - Data cache: 16kB
 - Register file size: 96 General Purpose Registers
 - Dedicated coprocessor interface
 - Compiler supports optimal scheduling of accesses
 - Customizable function unit: SIMD instructions
 - Dual operation for MV handling (dual add/median)
 - Parallel LOAD and STORE unit
 - 1 load and 1 store per cycle
 - Increase parallelism by reducing pressure on the load / store unit
VLIW TriMedia Configurable Core

- Instruction fetch unit
- Register file
- Decode
- Memory BIU
- Co-proc unit
- User-defined Accelerator
- Memory bus
- Control bus
- Processor Internal Peripherals
- Timers
- Interrupt Controller
- Debug Support
- Prefetching
- Slave BIU
- Master BIU

Configurable
User defined
Timer interrupt & debug I/Os

Processor frequency
Memory frequency
64-bit memory bus
Control bus
Peripheral frequency

Philips Semiconductors © 2006, All rights reserved
• Connected to Entropy Decoding Accelerator
 – Primitives:
 • rd_bits(n) / rd_uvlc(n) / rd_cabac_symbol(ctx0,ctx1,…)

• Load/Store programmer’s interface:
 – cop_ld32r, cop_ld32r, cop_ld32x, cop_st32d

• Configurable coprocessor load / store latency
 – Latency set to 7 cycles for LD / 4 cycles for ST
 – Scheduling support in compiler tool chain for 0 overhead access

• Drastically reduces stalls on co-processor accesses
 – 15 % performance gain compared to normal BIU
TM Config – User defined unit

• Customizable SIMD unit in CPU pipeline
 – Up to 4 32-bit sources / Up to 2 32-bit destinations
 – Full compiler support
 – RTL module inserted at synthesis time

• Examples of usage
 – H264 motion prediction
 – Motion vector scaling
 – H264 delta motion vector context computation

• Benefits
 – Parallelism of SIMD (e.g. (X,Y) computed in single step)
 – Removal of low level branches
 • Very damaging for efficient scheduling on VLIW with long pipeline
Pixel processing challenges

![Diagram of pixel processing challenges](image-url)
Pixel processing challenges
Programmable pixel processors

• Same principles used for video compression
 – Transform based residue / intra coding
 – Quantization
 – Combination of motion prediction and residue
 – Filtering for motion predictors
 – Deblocking
• But different processes and implementation
• Consequence for a multi standard solution
 – Hardwired solutions become complex
 • Resource sharing is possible but increase verification effort
 – Symmetric multi processing is not efficient
 • Diversity of algorithms defeats architecture optimization
 • Scheduling is an issue due to increasing data dependency
Programmable pixel processors

• Example: Transform
 – MPEG started with 8x8 IDCT but over time
 • Different shapes
 • Different dynamic range / rounding
 • Integer transforms
 – Complexity
 • 23.6 M 1D transform / s for MPEG2 HD
 • Operations for 1D DCT
 – 50 operations including 8 input loads + 8 output writes
 • Budget: 8 cycles at 200 MHz
 – Need for a dedicated processor structure removing overhead of typical architectures
 • Direct access to data is key to achieve performance and efficiency
Programmable pixel processors

Program flow control

Program RAM

Instruction decoder

Input buffer

ALU1

ALU2

Register file

Output buffer

Fetch

Decode

Load

Execute

Write
Programmable pixel processors

- **Solution**
 - Dual issue 5 stages ASIP core
 - Direct input / output buffer access
 - 24 general purpose registers
 - 2 ALUs
 - Single cycle butterfly op
 - Load / butterfly op
 - Butterfly, round and store op
 - Zero overhead loop support
 - Different transforms supported by
 - Adjusting coefficients in GPR for butterfly ops
 - Changing loop limits (shapes)
 - Adjusting rounding parameters (in dedicated registers)

- **Performance**
 - MPEG DCT in 112 cycles (7 cycle / 1D IDCT)
 - H.264 4x4 transform in 16 cycles
Programmable pixel processors

• Results
 – Hardwired solution for 5 standards : 0.2 mm² in 90 nm LP
 – Programmable engine : 0.12 mm² in 90 nm LP

• Other application : deblocking
 – VC-1 has 2 deblocking mechanisms, overlap transform and deblocking filter
 – Control in hardware is possible but difficult to mature
 – New unit is implemented as a programmable engine with Lisatek tool suite from CoWare
 • Pipelined filter operation
 • Control moved to firmware
 • Improvement in debug time for no area penalty
 – Area improves as other deblocking algorithms are mapped onto the same processor
Programmable pixel processors

Program flow control

Instruction decoder

ALU

LD/ST

ALU

ALU

Register Bank 0

Register Bank 1

Input buffer

Output buffer

Program RAM

Fetch

Decode

Load

Execute

Write

Philips Semiconductors © 2006, All rights reserved
Outline

• Multi-Standard Video Decoder overview
 – Internal system architecture

• Design challenges
 – CPU performance
 – Customized TriMedia VLIW core
 – Programmable pixel processing

• Results & Conclusion
Results - MSVD key figures

- Hardware characteristics
 - All figures are in 90 nm low power process
 - CPU core operating @ 333 MHz (soft core)
 - 5 issues VLIW architecture + support for SIMD
 - 32/16 kB I/D cache
 - Customized instructions and 0 overhead coprocessor
 - Area 3.2 mm² including caches
 - MSVD core operating @ 166 MHz
 - Area 3.70 mm²
 - Total area 6.9 mm²
Conclusion

• Efficient multi-standard HD solution achieved by
 – Proper partitioning of tasks
 – Usage of customized CPU core associated with closely coupled and loosely coupled dedicated processing units

• Preserve a good deal of flexibility at HD level performance
 – Wide range of standards supported
 – Capability to deal with variants (e.g. DivX x.xx)
 – Error concealment strategy in SW

• Programmable computation engines bring flexibility, design time and area reduction