Scalable Parallel Programming with CUDA

Introduction

John Nickolls
Parallelism is Scaling Rapidly

- CPUs and GPUs are parallel processors
 - CPUs now have 2, 4, 8, … processors
 - GPUs now have 32, 64, 128, 240, … processors

- Parallelism is increasing rapidly with Moore’s Law
 - Processor count is doubling every 18 – 24 months
 - Individual processor cores no longer getting faster

- Challenge: Develop parallel application software
 - Scale software parallelism to use more and more processors
 - Same source for parallel GPUs and CPUs
GPU Sizes Require CUDA Scalability

32 SP Cores
128 SP Cores
240 SP Cores
CUDA is C for Parallel Processors

- CUDA is industry-standard C
 - Write a program for one thread
 - Instantiate it on many parallel threads
 - Familiar programming model and language

- CUDA is a scalable parallel programming model
 - Program runs on any number of processors without recompiling

- CUDA parallelism applies to both CPUs and GPUs
 - Compile the same program source to run on different platforms with widely different parallelism
 - Map to CUDA threads to GPU threads or to CPU vectors
CUDA Uses Extensive Multithreading

- **CUDA threads** express fine-grained data parallelism
 - Map threads to GPU threads or CPU vector elements
 - Virtualize the processors
 - You must rethink your algorithms to be aggressively parallel

- **CUDA thread blocks** express coarse-grained parallelism
 - Map blocks to GPU thread arrays or CPU threads
 - Scale transparently to any number of processors

- **GPUs execute thousands of lightweight threads**
 - One DX10 graphics thread computes one pixel fragment
 - One CUDA thread computes one result (or several results)
 - Provide hardware multithreading & zero-overhead scheduling
CUDA Computing with Tesla T10

- 240 SP processors at 1.5 GHz: 1 TFLOPS peak
- 128 threads per processor: 30,720 threads total
CUDA Computing Sweet Spots

Parallel Applications:

- High arithmetic intensity:
 Dense linear algebra, PDEs, \(n \)-body, finite difference, …

- High bandwidth:
 Sequencing (virus scanning, genomics), sorting, database, …

- Visual computing:
 Graphics, image processing, tomography, machine vision, …

- Computational modeling, science, engineering, finance, …
Pervasive CUDA Parallel Computing

• CUDA brings data-parallel computing to the masses
 - Over 85 M CUDA-capable GPUs deployed since Nov 2006

• Wide developer acceptance
 - Download CUDA from www.nvidia.com/CUDA
 - Over 50K CUDA developer downloads
 - A GPU “developer kit” costs ~$200 for 500 GFLOPS

• Data-parallel supercomputers are everywhere!
 - CUDA makes this power readily accessible
 - Enables rapid innovations in data-parallel computing

• Parallel computing rides the commodity technology wave
CUDA Zone: www.nvidia.com/CUDA

Resources, examples, and pointers for CUDA developers