Xilinx Virtex-6 and Spartan-6 FPGA Families

Peter Alfke, Xilinx, Inc
Virtex-6 and Spartan-6 FPGA Families

- **Moore’s Law**
 - Doubles the max capacity, compared to the previous generation
 - Reduces cost per function

- **Architecture and circuit innovations**
 - Increase speed and lower power consumption

- **Wide range of capacity, applications, cost**
 - Virtex-6 and Spartan-6 FPGAs cover a 250 : 1 capacity range
 - At the high end: Virtex-6 covers a 10 : 1 ratio
 - At the low end: Spartan-6 covers a 40 : 1 ratio
 - The name always indicates the logic capacity: XC6V760 to XC6S4

- **Virtex-6 and Spartan-6 share architecture, technology, software**
 - Different emphasis on cost, performance, power, size, packaging
 - Used to be cousins, now they are siblings

- **Both families are sampling since mid-2009**
Hard IP blocks for widely-used functions: faster, more efficient, lower power
Careful choice: every user must pay for these functions, whether used or not
Virtex-6 and Spartan-6 Architecture Alignment

Virtex-6 FPGAs

- 760K Logic Cell Device

- Common Resources
 - LUT-6 CLB
 - Block RAM
 - DSP Slices
 - High-performance Clocking
 - Parallel I/O
 - FIFO Logic
 - Tri-mode EMAC
 - System Monitor

Spartan-6 FPGAs

- 150K Logic Cell Device
- High-speed Gigabit Transceivers

- Hardened Memory Controllers
- 3.3 Volt compatible I/O

Enables design portability, allows design re-use

*Optimized for target application in each family, Gigabit transceivers in large Spartan-6 devices
What is Virtex-6?

- **Next Generation 40nm Virtex Product Family**
 - Increase in size, density and cost reduction compared to Virtex-5
 - Increased speed and reduced power mainly through architecture and circuitry
 - Evolutionary Feature Enhancements from Virtex-5

- **Three Platforms**
 - **LXT**: popular mix of logic, memory, DSP and serial connectivity
 - **SXT**: additional DSP and Memory, same serial connectivity
 - **HXT**: adds 11.2 Gbps transceivers for highest total bandwidth

- **Staged Rollout**
 - **LXT & SXT**: “ES” 3Q09, General availability 4Q09, Production early 2010
 - **HXT**: Production 2010
Power Focus: Process and Circuit Innovation

- **Low static power (controlled leakage)**
 - 3rd generations of Triple Oxide innovation
 - Fast transistors wherever needed, low leakage everywhere else
 - Speed without additional leakage:
 - Silicon Germanium (SiGe) implant layer
 - Strained silicon

- **Low dynamic power**
 - Process shrink and low-K dielectric material
 - \(V_{ccint} = 1.0 \text{ V with 0.9 V option} \)
 - 20% lower power @ 10% lower speed

Careful power reduction while maintaining performance
Performance Improvements, Virtex-6 over Virtex-5

- **Logic: 15% faster**
 - Advanced process, improved routing, faster pipelining

- **Serial Transceivers: 86% higher total bandwidth**
 - Up to 72 transceivers delivering 580 Gbps in Virtex-6 HXT
 - Compared to 48 transceivers delivering 312 Gbps in Virtex-5 TXT

- **General-purpose I/O: 33% higher bandwidth**
 - Enables advanced memory interfaces (DDR3)

- **Global clocking: 10% faster**
 - Lower skew, improved jitter, faster clock trees

- **DSP bandwidth more than doubled**
 - Over 2,000 enhanced DSP slices
Ease of Use and Lower Cost

- **Designed to be backward compatible with Virtex-5**
 - Same GTX, SelectIO, BRAM, MMCM, & LUT6 primitives
 - Superset of CLB and DSP fratures

- **Simple IO planning and board layout**
 - All IOs support all standards at all speeds, period.
 - Homogenous IOs simplify layout

- **Simple power supply planning**
 - Requires only three power supplies. (VCCINT, VCCAUX & VCCIO)
 - Embedded decoupling capacitors

- **Shorter Time to Market**
 - Easy Migration from previous generations
 - Large set of available and portable IPs
Virtex-6 Logic and BlockRAMs

- **CLB differences from Virtex-5**
 - Double the number of flip-flops
 - Much more efficient pipelining

- **Block RAMs same as in Virtex-5**
 - Higher memory / logic ratio in LXT
 - Up to 38 Megabits of Block RAM
 - Still the same features:
 - 36k Block splittable in 2x 18k Blocks
 - Single-port, simple dual-port and true dual-port
 - Read before write, as well as write before read
 - FIFO option

- **Don’t tamper with success**
Clocking and DSP

- **Large chips + high speed pose challenges**

- **Multiple clocks derived on-chip**
 - Mixed Mode Clock Manager (MMCM) replaces DCMs and PLLs
 - PLL-based technology with DCM-like enhancements

- **Very large chips need large Global Clock trees**
 - High fan-out, low delay, low skew, low jitter
 - Fan-out is driven from the center
 - In spite of this, largest chip lacks fastest speed grade

- **Dedicated DSP48 Multiplier / Accumulator**
 - Up to 2000 DSP48 circuits support parallelism
 - Superset of the Virtex-5 DSP block
 - Pre-adder saves logic and power
 - improves performance especially for symmetrical FIR filters
 - ALU-like second stage reduces power
Select IO and Gigabit Transceivers

Select IO has higher performance
- LVDS @ 1.4Gbps, DDR3 @ 1066+ Mbps
- Support for new memory types
 - DDR3-DIMM, RLDRAM-II, QDR-II+

GTX transceivers in every Virtex-6 device
- 150 Mbps to 6.5 Gbps, wide range @ low power
- Generates less jitter, tolerates more jitter
 - Critical for CEI6, PCIe Gen 2, OC-48, OTU-1
- Up to 72 Transceivers for highest bandwidth
- Growing demand for popular standards above 3.75G
 - PCIe Gen2, SRIO2, CPRI/OBSAI 6G, CEI-6G, Interlaken, ...

GTH transceivers in the HXT family
- highest speed: 11.2 Gbps,
- Narrow-range LC-based VCO for lowest jitter
Dedicated Blocks for High-Bandwidth Standards

PCI-Express
- Now supports 5 Gbps Gen 2 (Spec 2.0): x1, x2, x4
 - Full Root Complex is supported with a soft IP wrapper
 - Allows simple FPGA to FPGA communication
- Small wrapper for Endpoint implementation
 - Easier timing closure:
 - <100 LUT for Virtex-6 FPGA vs. 3,000LUTs for Virtex-5 FPGA (x8)

EMAC
- *Ethernet at 10/100/1000/2500 MHz*
- Stable standard; well understood use model
- Very Similar to the Virtex-5 TEMAC block
 - Added 2.5G over-clocked mode (2500)
 - Demand for 2.5 G operation is growing
 - Interoperable with Broadcom ASSPs: 2.5 G switches
Attention to Signal Integrity Issues

- **Virtex-6 uses Flip-Chip technology**
- **I/Os spread over the chip,**
 - not limited to the periphery
 - No wire-bonded I/Os, less inductance
 - Up to 8000 micro-bumps attach to the package
- **Generous decoupling capacitors inside the package**
 - More effective, better quality, lower cost for the user
- **10-layer controlled-impedance package substrate**
 - 1-mm ball pitch to ease board layout
 - “Sparse Chevron” interspersed Vcc and GRD
 - Gigabit transceivers isolated on the left edge
 - Improved thermal performance,
 - metal top attached to the chip,
 - low thermal resistance to the board
Virtex-6 Device Package Cross-Section

High-performance flip-chip technology Most designs are I/O-bound
High-End Features in Spartan-6 FPGAs

- **Spartan-6 uses a 45-nm process, optimized for low power**
 - Low-cost FPGAs usually sacrifice performance
 - But there are exceptions:

- **DDR3 Controller**
 - DDR3 is lowest cost external memory, but needs a demanding interface
 - DDR3 requires clock rate of >300 MHz (PLL on the memory device)
 - Spartan-6 devices incorporate 2 or 4 dedicated DDR3 controllers.

- **Multi-Gigabit Transceivers @ up to 3.125 Gbps**
 - For bit-serial connectivity between devices, boards and boxes
 - eliminates clock / data skew, reduces board area or cabling
 - differential signals, 4 wires total, support high-bandwidth traffic,
Integrated Memory Controller in Spartan-6 FPGAs

- Provides interfaces from low cost FPGAs to industry’s most popular DRAM memories
 - DDR, DDR2, DDR3, mobile DDR

- Up to 4 controllers in each Spartan-6 device
 - Each of these hard-coded controllers saves between 500 and 2000 LUTs versus soft solution
 - Very important for cost-sensitive designs

- 12.8 Gbps bandwidth per controller
 - 16-bit wide, 400MHz / 800Mbps operation
 - Each controller interfaces to one DDR3 chip, no DIMMs

- Fast and easy implementation
 - Wizard guided design flow
 - Virtex-6 solution uses soft controller for flexibility

• Low-cost FPGA meets low-cost, but fast memory
- Simple user interface abstracts away complexity of memory transactions
- MIG / EDK wrapper delivers complete interface solution
 - Internal block assembly and signal connectivity is made transparent to the user
Multi-Gigabit Transceivers in Spartan-6 FPGAs

- **Dedicated parallel-to-serial transmitter and serial-to-parallel receiver**
 - Many programmable features, compatible with a wide range of standards
 - Unidirectional, differential bit-serial data I/O
 - Integrated PLL-based Clock and Data Recovery (CDR)

- **Parallel interface to the FPGA internal fabric**
 - 8 to 40 bit wide, to accommodate internal speed limits and optional fabric encoding

- **Serial interface to the Printed Circuit Board (differential signaling)**
 - Differential Current Mode Logic (CML)
 - Two traces for the transmitter, and two traces for the receiver, removes common-mode noise
 - Programmable signal swing and Tx & Rx equalization
Availability

Three Levels of Availability

- **Initial ES Silicon:**
 for Xilinx-internal use, testing, evaluation, and sometimes for special customers

- **General ES Silicon:**
 available for general ordering through distribution with a specified lead-time. Usually has an errata sheet.

- **Production:**
 100% tested and verified, available for general ordering through distribution. Distributor quotes price and lead time.
 - All devices, temperature and speed grades
Virtex-6 and Spartan-6 FPGA Families

Summary

- Both families take advantage of 40/45 nm technology and innovative architecture and circuit design
 - Improved performance, smaller size, lower cost, lower power
 - Virtex-6 evolved from the successful Virtex-5 family
 - Spartan-6 more closely related to Virtex-5 and Virtex-6 than to Spartan 3A

- Similar in architecture, but each is optimized
 - Virtex-6 for performance, features, and capacity
 - Spartan-6 for low cost and low power

- Complete documentation on the web:
 - Data Sheets and User Guides:
 - Evaluation Boards
 - Software