The Cavium 32 Core OCTEON II 68xx

R. E. Kessler
Cavium, Inc.
Hot Chips 23
August, 2011
Agenda

- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results
About Cavium, Inc.

- Founded 2001
- NASDAQ IPO (CAVM) 2007
- 825 Employees, 625 in Engineering
- $250+M annual revenue run-rate, among fastest-growing public technology companies
- Profitable with Strong Financials: ~$70M cash & cash equivalents, no debt, strong cash flow

- Global Footprint: US, India, Taiwan, China, Canada
- MIPS and ARM based Processor SOCs
- Addressing Multi-billion dollar Networking, Communications and Digital Home markets
- Voted #1 Multi-core processor vendor by Heavy Reading 2010 survey of 50+ worldwide networking OEMs
Cavium SoC’s for Range of Target Markets

<table>
<thead>
<tr>
<th>Networking</th>
<th>Consumer</th>
<th>Wireless</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise & Edge Routers</td>
<td>Home, Video, High Bandwidth Broadband</td>
<td>3G, 4G Infrastructure</td>
<td>LAN: Controllers & Enterprise AP’s</td>
</tr>
<tr>
<td>Enterprise, Metro Switches & L4-L7 Equipment</td>
<td>Security & DPI Equipment</td>
<td>LAN: Controllers & Enterprise AP’s</td>
<td>Storage Networking, Arrays & Adapters</td>
</tr>
<tr>
<td>Security & DPI Equipment</td>
<td></td>
<td>3G, 4G Infrastructure</td>
<td></td>
</tr>
<tr>
<td>Networking</td>
<td>Video SoCs</td>
<td>Base-station, RAN, Core SoCs</td>
<td>WLAN Controller & AP SoCs</td>
</tr>
<tr>
<td></td>
<td>PureVu</td>
<td>OCTEON</td>
<td>OCTEON</td>
</tr>
<tr>
<td></td>
<td>Media & Set Top SoCs</td>
<td>OCTEON</td>
<td>OCTEON</td>
</tr>
<tr>
<td></td>
<td>Celestial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMB, Home & NAS SoCs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>OCTEON</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intelligent Adapter SoCs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Points:
- Highly Integrated SOCs enable Lower Real-Estate, Cost & Power

[Image: Cavium OCTEON II 68xx – Hot Chips 23, August 2011]
OCTEON Design Philosophy

High Application Performance at Low Power and Cost
- Many power and area efficient MIPS64 CPU cores
- Hardware acceleration for high packet throughput, and content processing, e.g. compression, RegEx pattern match, RAID5/6
- Integrated networking and memory controllers

Scalable Performance
- Take advantage of packet and flow-level parallelism
- Linear performance scaling with increasing number of cores enabled by proven hardware features

Optimized ISA
- MIPS64 version 3 instruction set with OCTEON enhancements
- More than 80 instructions added on top of MIPS ISA
- Full C programming and OS support

Flexible Hardware Security Acceleration
- Hardware accelerators in each core for a comprehensive set of asymmetric and symmetric algorithms: RSA, DH, ECC, IPSec, SSL/TLS, KASUMI, SNOW3G, others
- Adapt to new algorithms through software updates

Software Compatible Roadmap
- Single SDK to develop software for all OCTEONs
- Software compatible from 1-32 cores
• 32 custom designed MIPS64 cores
• Up to 1.5 GHz
• Up to 96G inst/sec, 40+Gbps
• 4 72-bit DDR3 interfaces up to 1600 MHz data rate
• Optimized for service-rich networking, security, wireless, and storage apps
• HW Acceleration:
 ✓ DPI acceleration with integrated HFA (RegEx Engine)
 ✓ Comprehensive crypto algorithms and RNG
 ✓ TCP, Packet Processing
 ✓ Compression
 ✓ RAID5/6, De-dup
 ✓ Multi-core scaling
Agenda

- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results
Small CPU Core or Big CPU Core?

- Many potential Big Core features:
 - Huge caches
 - Very high frequency, deep pipeline
 - Many-way issue
 - Out-of-order issue
 - Floating-point
 - ...

- Important questions:
 - Does the feature add more performance than area/power?
 - Is the feature difficult or expensive to implement, take to production, and support?
cnMIPS II Core Goals:
- General-purpose, industry-standard 64-bit ISA
- Great fit for networking, security, wireless
- Excellent MIPS/area & MIPS/watt
- Use multi-core to scale product line up and down
- Low latency, deterministic performance

cnMIPS II Core Non-goals:
- Highest power
- Highest cost
- Greatest complexity (longer implementation time)
- Largest customer support cost

Not directly mentioned:
- Frequency
- Single-thread performance
- ...
- Shipping at up to 1.8 GHz in 65nm
- Thread-dedicated resources = very deterministic CPU performance
- Highly-associative L1 caches = equivalent miss rate to much larger caches
Agenda

- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results
OCTEON Cache Policies

- L1 <-> L2 Cache: Write-through
 - Excellent performance for networking and mobile applications
 - Minimal per-CPU-core cost
 - Simple and highest performance
 - Lowest possible read latencies
 - Allows many outstanding stores, optimizations
 - Automatic L1 error correction

- L2 Cache <-> DRAM: Write-back
 - Standard DDR3 DRAM DIMM’s are highest performance with block transfers
 - Minimizes required DRAM bandwidth
 - Don’t-write-back feature (e.g. for most of packet data) plus additional cache hints
Write-through, write-invalidate coherence protocol

L2 Cache Controller is the coherence point
- L2 controller tracks L1 cache contents
- Invalidates to maintain L1 coherence

Aggressive write-buffering in cnMIPS II cores eliminates writes
- 2 KB merging write buffer
- Fully-coherent, loosely-consistent memory model
- Page-wise hints to eliminate write-buffer flushes of private data
Lower Core Count OCTEON Coherent Interconnect

Redrawn:

Cavium OCTEON II 68xx – Hot Chips 23, August 2011
32 Core OCTEON Coherent Interconnect

- Crossbar interconnect easily scales to 32 cores
- Optimized for both low latency and high bandwidth
- Flat, deterministic latency profile
- Interconnect provides best combination of scalability and low-power
32 Core OCTEON Chip Floorplan

MAC's and Coprocessors

8 cnMIPS II Cores

4 MB L2 Cache, Coherent Interconnect, DRAM Controllers

8 cnMIPS II Cores

8 cnMIPS II Cores

Approximately 800 Million Transistors in 65nm
Agenda

- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - **Power scalability**
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results
OCTEON 68xx Power Optimizer Technology

- Per-CPU dynamic power consumption estimates
 - Digital logic that monitors CPU behavior
 - Pipe, functional unit, bus and clock activity monitored
- Per-CPU dynamic power threshold
 - CPU forced to idle when estimate exceeds threshold
 - Power controlled over intervals of 256-1024 cycles
- Per-CPU threshold in a register
 - Software can quickly and easily change it
- Suitable for thermal design or average power reduction:
 - Closed-loop (e.g. thermal sensor) or open-loop thermal solution
Accuracy of Dynamic Power Estimate for Various Applications

![Graph showing the relationship between measured dynamic power and dynamic power estimate. The graph is a scatter plot with a linear trend line.](image-url)
Performance vs. Dynamic Power Threshold for Zlib
Thermal Improvements from 16 Core 58xx to 32 Core 68xx OCTEON (per Dhrystone instruction)

- cnMIPS II Power Optimizer tuning for Dhrystone
- Dhrystone IPC improvement
- Standard cnMIPS II Power Optimizer reduction to 80%
- 65nm Technology and Implementation vs 90nm
The OCTEON solution is unique

Advantages compared to dynamic voltage and frequency scaling (DVFS):
- Very fine-grained core-by-core power control
- A low power application is not penalized
 - Frequency reduction affects all applications
 - 95+% of applications don’t even achieve 80% of max spec power
- Power optimizer settings can change instantly with minimal software interruption
- Simpler chip and system design
 - Voltage and frequency do not need to change
Agenda

- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results
OCTEON Schedule/Synch/Order Hardware

- Work queueing
 - Unlimited-size queues for work
 - Work can be created by software
 - Work can be created by hardware
 - e.g. packet arrival

- Work/Packet Ordering

- Automatic synchronization and lock-removal

- Dynamic work scheduling
 - Hardware selects from amongst input queues
 - Quality of service
 - Different cores can receive different work
 - Integrated with ordering and synchronization
 - Work proceeds only when ordering and synchronization allows
Agenda

- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results
68xx Coprocessors

- 68xx has many coprocessors suitable for many tasks:
 - Packet processing acceleration
 - TCP processing acceleration
 - Security acceleration
 - Compression/ Decompression acceleration
 - ...

- But the next few slides focus only on regular expression matching, which is required by Deep-Packet Inspection applications
Many applications require Deep-Packet Inspection (DPI):
 - Intrusion detection/prevention, Packet classification, ...

We focus on pattern matching here
 - DPI may also require packet, TCP, and other processing that can be accelerated by other OCTEON coprocessors
 - The percentage of data scanned for matches varies for different applications
 • a few percent (e.g. Application Recognition) to most packet bytes (e.g. Anti-Virus, IPS)

Patterns/rules are often regular expressions
 - Pre-compiled into hardware state machines

Cavium OCTEON 68xx HFA processing technology:
 - Searches for regular expressions via both:
 • Deterministic Finite Automata (DFA), and
 • Non-deterministic Finite Automata (NFA)
 - Includes graph compression and caching to maximize coverage and performance
 - Compatible with stand-alone NITROX DPI processors from Cavium
Agenda

- Introduction to OCTEON and 68xx
- OCTEON II 68xx Scalability Techniques
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- Chip Performance Results
EEMBC CoreMark

> 4X Performance over previous generation
> 3X Performance/Watt over previous generation

Chip CoreMark Performance

OCTEON Plus CN58xx

OCTEON II CN68xx
IPv4 Packet Forwarding

Delivered Bandwidth (Gbit/sec)

- Many cores free for advanced packet processing

- Limited by IO

Number of Cores

256B
Large
Full IPSEC Application

Delivered Bandwidth (Gbit/sec)

- Limited by IO

Packet Size (Bytes)

- Up to 16 Cores free for other processing

Speedup for small packets

- Linear scalability

Number of cores
Conclusions

- The 32 Core Cavium OCTEON II 68xx:
 - Up to 96 billion industry-standard 64-bit instructions per second
 - Including a coherent crossbar interconnect and other features delivering scalable general-purpose processing power
 - Including Power Optimizer technology that maximizes compute capability within a thermal envelope
 - Including integrated coprocessors tuned for networking, security, wireless, and storage