SwitchX
Virtual Protocol Interconnect (VPI)
Switch Architecture
SwitchX™ - Virtual Protocol Interconnect® Solutions

- Fifth generation switching IC from Mellanox
- Virtual Protocol Interconnect (VPI) technology – ‘One-Wire’ fabric for InfiniBand – Ethernet – Fibre Channel traffic
- Provides Highest Capacity, Lowest Latency, Lowest Power consumption in the Industry
SwitchX™ Performance and Configuration Flexibility

PERFORMANCE

- 4Tb/s
- 36 x 40/56G
- 200ns Latency
- 40 Watts @ 64 10GE
- 55 Watts @ 36 40GE

1U switch configuration options
- 36 Port FDR IB
- 36 Port 40GigE VPI IB/Ethernet
- 64 Port 10GigE VPI IB/Ethernet
- 12 Port 40GigE/48 Port 40GigE VPI

Blade switch configuration options
- 16 - 40GigE to servers
- 12 - 10GigE to LAN
- 8G FC to SAN/2 - 40GigE stacking ports

Modular switch chassis options
- Up to 648 56G IB ports
- Up to 648 40GigE ports

Switch OS Layer

- Unified Fabric Manager

SwitchX™ VPI Switch

- Switch X-OS Layer
- VPI Switch
- Setting Up
- Security
- Ports
- Fabric Monitor
- Fabric Inspect
- Status

1U switches

- 4Tb/s
- 36 x 40/56G
- 200ns Latency
- 40 Watts @ 64 10GE
- 55 Watts @ 36 40GE

Blade switches

- 16 - 40GigE to servers
- 12 - 10GigE to LAN
- 8G FC to SAN/2 - 40GigE stacking ports

Modular switches

- Up to 648 56G IB ports
- Up to 648 40GigE ports
Ethernet Switching Performance

- **Throughput (2.5X)**
 - 2.88Tb/s throughput on a single chip, running Full Wire Speed at any packet size

- **L2 UC/MC Latency for L2/L3 switches (2X)**
 - 198-223ns for any packet size

- **L3 Latency (2X)**
 - 321-337ns for any packet size

- **Power Efficiency (6X)**
 - Sub 0.6Watt per 10GbE throughput with 100% load at Full Wire Speed
Feature Overview

Physical Layer
- SFI XAUI/RXAUI/XLAUI KR/KR2/KR4 - 10/20/40/56 GigE
- IB SDR, DDR, QDR, FDR10, FDR - 10/20/40/56/100 Gb/s
- 2/4/8 Gb/s Fibre Channel

L2/L3 Protocols
- Ethernet, Datacenter Bridging, TRILL, QCN, Fibre Channel Forwarder, IP Routing, IB Routing

Bridges
- Ethernet to Fibre Channel Gateways (NPIV)
- IB-Ethernet and IB-FC Gateways

QoS
- 802.1p and DIFFSERV classification, marking
- Access Control Lists (iACL, eACL)

Management
- Dual SGMII
- PCIe Gen2 x4, or PCIe x1 and Dual SGMII
- GPIOs, I2C, JTAG

Other Features
- Energy Efficient Ethernet, Active Power Governor
- IEEE 1588 time stamping
- 40nm process, 1924 pins in 45x45mm FCBGA 1 mm pitch
Converged I/O Solutions

- **2.8/4 Tb/s lossless switching**
- **64 10GigE, 36 40GigE**
- **Flexible mix of ports**
 - i.e. 48 10GigE, 12 40GigE
- **Multi-chip, high port count configurations**
 - Efficient cluster scaling
 - Fat tree scaling
 - Adaptive routing

- **NPIV, FCF based native FC ports**
 - 2/4/8 Gb/s
 - N, VN, F, VF, E, VE port types
 - Soft and hard zoning

- **Sample port configuration**
 - 40 10GigE, 24 8Gb/s FC
 - 52 10GigE, 12 8Gb/s FC
 - 24 40GigE, 24 8Gb/s FC
 - 30 40GigE, 12 8Gb/s FC
Virtual Protocol Interconnect (VPI) IO Convergence

Converged I/O with Ethernet

Converged I/O with InfiniBand

Repurposing

10/20/40/56 Gb/s Ethernet Ports

2/4/8 Gb/s FC Ports

10/20/40/56 Gb/s Ethernet Ports

2/4/8 Gb/s FC Ports

10/20/40/56 Gb/s IB Ports

10/20/40/56 Gb/s IB Ports

TRILL R-Bridge

L2 Switching

IP Router

IB Switching

IB Router

Ethernet GW

NPIV FC GW

NPIV FC GW

FC Forwarder
Switch Partitioning

- Up to 8 switch partitions can be activated
- Flexible number of Ethernet, FCoE, FC port assignments per switch partition
- Separate L2 data and control plane domains
- Multiple Virtual Routers
- Separate address space per VR
- Isolation and fault containment
Control Plane Multitenancy

- Multiple switch partitions can be instantiated
 - Like virtual switches inside physical switch
 - Complements virtualized servers and storage
 - Control/data separation like separate switches

- Flexible # of ports & personalities
 - Per switch partition, e.g., IB, L2+ Eth, FC

With Switch Partitions

Supports evolving cloud & multi-tenancy architectures
Switch Port Virtualization

- **Flexible VSP Allocation**
 - 16 VSPs on 18 ports
 - 8 VSPs on 36 ports
 - 4 VSPs on 64 ports

- **Hairpin Mode per VSP**
- **Switch Partition per VSP**
- **SVID Allocation**
- **IEEE 802.1Q**
 - Bridge Port Extension
 - VLANs
 - Traffic Prioritization

VSP = Virtual Switch Port
SVID = S VLAN ID
SwitchX Multi-chip Stacking

- Chain and ring topologies
- Any port can be a stacking port
- Single point of management across stacking units (SU)
 - Efficient Inband configuration over management datagrams (eMAD)
- System resiliency
 - Any SU can take charge of the system
 - Alternate paths dynamically used when stacking link down
- Cross system features
 - Link aggregation – ports across SUs in same LAG group
 - ACL – same policy to ports across SUs
 - e.g. VLAN ACL
 - Unified tables are populated on all SUs
 - e.g. L2 filtering DB, L3 routing tables
Multi-chip Configuration - Topologies

2 Layers FAT-TREE

- Non Blocking
- L2 and L2 Multicast forwarding
- Link Aggregation across fabric
- Port Mirroring across fabric
- Seamless class of service support
- Preserving VLAN membership

This slide does not present all possible configurations – but rather most reasonable multi-chip configuration topologies
Flexible Switch Management Interface

- **Single chip**
 - x4 PCIe or dedicated GigE network

- **Multi chip**
 - x4 PCIe to inband fabric (Eth or IB) or dedicated GigE network
- Fully Pipelined Implementation
- Low-latency cut-through switching support
- Wire speed forwarding
Queuing and Scheduling

- 8 Traffic Classes
- ETS Scheduling
- Mirroring/Replication
- UC/MC Flows
SwitchX TOR Portfolio

Ideal as a ToR/Core using efficient 40GbE links between 1st and 2nd tiers

ToR with 960G of BW equally split between 10G downlinks and 40G uplinks

Ideal as a ToR connected to a 3rd party core switch with no 40GigE links

- **Capacity**
 - 36 40GbE ports
 - 64 10GbE ports
 - 48x10GbE+12x40GbE combo
 - Various other port schemes via breakout cables

- **Key Features**
 - L2/L3 stack
 - VPI
 - 56GbE
 - End to end solution

- **Latency**
 - 220ns latency 40GbE
 - 330ns L3 latency
 - 270ns latency 10GbE
 - 430ns L3 latency

- **Throughput**
 - 2.88Tb/s of non-blocking throughput

- **Power**
 - Under 1W per 10GbE interface
 - 2.3W per 40GbE interface
 - 0.6W per 10GbE of throughput
Mellanox SX6536

- 648 x QSFP 40GE* ports
- 1152 x SFP+ 10GE* ports
- 51.84Tb/s throughput
- 9.6 Watt/40GE port
- Latency: 700ns inter line, 230ns same line
- World’s first Cut-Through modular Ethernet switch
- N+N PS Redundancy
- L2/L3 SW Stack
- Same Chassis is used for IB FDR (56Gbps)
- Smaller Chassis (324p, 216p, 108p)
 - Same leafs, spines, management boards
 - Same architecture
Thanks