High performance and efficient single-chip small cell base station SoC

Kin-Yip Liu
Cavium, Inc.
kliu@cavium.com

Hot Chips 24, August 2012
Presentation Overview

- Base station processing overview
- Why small cells and heterogeneous Radio Access Network (RAN)
- Small cell design based on OCTEON Fusion
- OCTEON Fusion CNF71XX architecture
- CNF71XX design
- Software models
- Summary
LTE Wireless Network Overview

- **LTE equipment:**
 - Base Stations – eNodeB
 - User equipment (UE), e.g. cell phone, dongle for notebook PC
 - Core network – Evolved Packet Core (ePC)

- An eNode interfaces with:
 - ePC (multiple nodes with different functions)
 - Control, signaling
 - To voice & data networks
 - UE’s
 - Neighbor eNodeB’s
 - Communicate load and interference info
 - Handover UE’s
LTE Protocols & Processing

- eNodeB relays information between UE and ePC
- eNodeB and UE communication protocol:

<table>
<thead>
<tr>
<th>Protocol layers</th>
<th>Processing functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRC (layer 3)</td>
<td>Set up and maintain radio bearers. Manage radio resources. Control functions. Handover decisions</td>
</tr>
<tr>
<td>PDCP (layer 2)</td>
<td>En/decrypt over-the-air traffic, Header de/compression</td>
</tr>
<tr>
<td>RLC (layer 2)</td>
<td>Segment and reassemble traffic. Ensure in-order traffic delivery. Re-transmit as needed</td>
</tr>
<tr>
<td>MAC (layer 2)</td>
<td>Schedule use of over-the-air resources. Select PHY configuration for transfers. Collect stats & report to RRC</td>
</tr>
<tr>
<td>PHY (layer 1)</td>
<td>Physical layer: OFDM for downlink. SC-FDMA for uplink</td>
</tr>
</tbody>
</table>

- eNodeB and ePC communication protocol:
 - IP network, IPSec protected, GTP tunnels of user data in UDP/IP, SCTP for control traffic
Classes of Base Stations

<table>
<thead>
<tr>
<th>Small Cells</th>
<th>Home Femto</th>
<th>Enterprise Femto</th>
<th>Pico</th>
<th>Micro</th>
<th>Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Radius</td>
<td>50m</td>
<td>75m</td>
<td>250 - 400m</td>
<td>2 - 20km</td>
<td>20km</td>
</tr>
<tr>
<td>No. of users</td>
<td>8</td>
<td>32</td>
<td>128</td>
<td>1200</td>
<td>3600</td>
</tr>
<tr>
<td>Peak data rate</td>
<td>50Mbps DL 25Mbps UL</td>
<td>100Mbps DL 50Mbps UL</td>
<td>150Mbps DL 75Mbps UL</td>
<td>300Mbps DL 150Mbps UL</td>
<td>900Mbps DL 450Mbps UL</td>
</tr>
<tr>
<td>User Mobility</td>
<td>4 km/hr</td>
<td>4 km/hr</td>
<td>50 km/hr</td>
<td>350 km/hr</td>
<td>350 km/hr</td>
</tr>
<tr>
<td>Locations</td>
<td>Home</td>
<td>Office, school, apartment buildings, malls</td>
<td>Urban hotspots, rural areas</td>
<td>Urban, rural areas</td>
<td>Metro, traditional approach</td>
</tr>
</tbody>
</table>

DL – Downlink. Traffic going from network to user

UL – Uplink. Traffic going from user to network
Additional Small Cell Requirements

- **WiFi option**
 - Single platform for Small Cell + Access Point
 - SoC must provide performance headroom for both functions

- **Power-over-Ethernet**
 - Simplify system deployment, but limited system power supply
 - SoC must consume very low power

- **Time synchronization**
 - Mandatory for LTE base stations. IP backhaul, no TDM interface
 - GPS option. May not work well in-door
 - Software solutions: IEEE 1588 v2, NTP. In-door OK, cost effective

- **Security**
 - Authenticated and encrypted software for secure boot
Why deploy small cells?

……..for **Hot spots** and **Not spots**

- **Easing congestion**
 - within macro coverage

- **New coverage**
 - in addition to macro

Small Cells essential for LTE coverage, capacity, and throughput

High performance and efficient single-chip small cell base station SoC

Hot Chips 24
Kin-Yip Liu
Aug 2012
Current Generation Base Stations

High performance and efficient single-chip small cell base station SoC

OCTEON Multicore SoC

Communicate w/ core network

Common Software

Single-chip Multicore SoC for Layer 2 and above processing. Common software from Small to Macro cells
Next Generation Base Stations

Single-chip Multicore + baseband module SoC for Small Cells. Common software from Small to Macro cells

High performance and efficient single-chip small cell base station SoC

Hot Chips 24

Kin-Yip Liu

Aug 2012
OCTEON Fusion based Small cell

OCTEON Fusion CNF71XX

Dual band 802.11n / ac

WiFi

PCIe

GbE

IEEE 1588 v2, SyncE

Backhaul

Management

DRAM

DDR3

Flash

JESD 207P

RF IC

Power Amp FEM

Small Cell Base Station + Access Point

High performance and efficient single-chip small cell base station SoC

Hot Chips 24

Kin-Yip Liu

Aug 2012
High performance and efficient single-chip small cell base station SoC

- **OCTEON Fusion CNF71XX**
 - Small cell BaseStation-on-a-chip Family
 - **High Performance LTE / 3G Small Cell SoC Processors:**
 - 4 MIPS64 cores up to 1.5 GHz
 - 6 DSP cores up to 500MHz
 - Many HW Accelerators for Packet Processing, LTE/3G, and Security
 - IEEE 1588 v2, SyncE
 - Authentik secure boot
 - **Highly Scalable**
 - Spanning 32 to 200+ Users
 - 3G and LTE FDD & TDD
 - Up to LTE 20MHz 150 Mbps Uplink (UL) + 150Mbps Downlink (DL)
 - **Headroom for Unique Carrier Class Features**
 - Multi-User MIMO
 - Self Optimizing Networks
 - Interference Cancellation
 - Advanced Receivers

High performance and efficient single-chip small cell base station SoC

OCTEON

Fusion CNF71XX

Small cell BaseStation-on-a-chip Family

- **High Performance LTE / 3G Small Cell SoC Processors:**
 - 4 MIPS64 cores up to 1.5 GHz
 - 6 DSP cores up to 500MHz
 - Many HW Accelerators for Packet Processing, LTE/3G, and Security
 - IEEE 1588 v2, SyncE
 - Authentik secure boot
- **Highly Scalable**
 - Spanning 32 to 200+ Users
 - 3G and LTE FDD & TDD
 - Up to LTE 20MHz 150 Mbps Uplink (UL) + 150Mbps Downlink (DL)
- **Headroom for Unique Carrier Class Features**
 - Multi-User MIMO
 - Self Optimizing Networks
 - Interference Cancellation
 - Advanced Receivers
Design Philosophy

High Performance and Power Efficient
- Power and area efficient CPU and DSP cores
- Scale performance with more cores
- Not depend on very high frequency or core complexity

Short Latencies Deterministic Performance
- Shortest cache and memory latencies. Optimize for determinism
- Flexible prefetch, cache hints, options to cache packet headers only
- L2 way partition feature avoids cache pollution

Optimized ISA Ease of programming
- MIPS64 r3 instruction set + >80 OCTEON instructions
- Full C programming. Standard OS and development tools

Comprehensive Hardware Acceleration
- TCP/IP, complete packet receive and transmit offload, packet ordering, QoS, work scheduling, buffer de/allocation, IPSec, wireless crypto algorithms, timers, wireless baseband functions
- Crypto coprocessor in each core. Best latency & determinism

Software Compatible Roadmap
- Software compatible from 1-48 cores and across generations
- Single SDK to develop software for all OCTEONs
- Software for macro base stations directly reusable for Small Cells
Baseband Module

Baseband module processing flows

- Wireless UL and DL processing differ. Partition the DSP cores and assign relevant hardware accelerators for UL Vs. DL processing
- Modular design with flexible partitioning simplifies software design

6x DSP cores optimized for wireless baseband processing

- 3-way VLIW, with 16x MAC or 4x complex MAC vector processing per cycle
- Optimizing instructions for wireless baseband processing
- Dual 128-bit load/store paths transfer up to two vector operands each cycle

Hardware accelerators (HABs)

- Comprehensive set of LTE and 3G, UL and DL relevant accelerators
- Automate offload to accelerators with DMA engines and Sequencer

Shared memory interconnect

- DSPs and HABs can access any memory structure in entire baseband module
A Cluster of the Baseband Module

HAB 1

HAB 2

HAB 3

HAB Memory Manager (DMA engines)

Data memory

DSP Core 1

Shared memory

DSP Core 2

Code memory

Interrupt control

Programmable Sequencer

Control path

Interrupts

128-bit dual load/store paths enable VLIW DSP cores to fetch two 128-bit vector operands + processing in single cycle

High performance and efficient single-chip small cell base station SoC

Hot Chips 24

Kin-Yip Liu

Aug 2012
CNF71XX Baseband Architecture

Shared memory interconnect enables flexibility in optimizing the processing models and flows

Example processing model and flow of wireless data

To IO Bridge, then L2/DRAM

Inter-cluster links enable DSP cores and HABs to access memory in other clusters

Interconnect interface, DMA engines, timers, reset control, etc.

Downlink processing Cluster

Uplink Symbol/Chip processing Cluster

Uplink soft-bit processing Cluster

RFIC interface

JESD 207P

High performance and efficient single-chip small cell base station SoC

Hot Chips 24

Kin-Yip Liu

Aug 2012
OCTEON Multicore

Wireless L2 & L3, Transport, Control, WiFi, Customer Apps

- OCTEON Fusion = OCTEON Multicore + Baseband module
- The OCTEON Multicore part of the SoC is the same architecture as OCTEON Multicore SoCs which have been widely deployed for designing base stations

CPU cores

- 4x OCTEON MIPS64 cores
- Shortest L1 and last-level-cache (L2) latencies among multicore processors
- Power optimizer™ per-core software controlled power reduction
- Fine-grained clock gating

Hardware accelerators

- Comprehensive packet processing hardware: Headers parsing, classification, RED, QoS, buffer allocation, L4 checksums, traffic rate limiting & scheduling
- Crypto, packet order, work scheduling, timers for TCP and RLC, RoHC

Low latency interconnect

- Split-transaction interconnects and L2 cache run at core frequency
Custom designed efficient 64-bit CPU core

- Dual-issue, 8+ stages. Optimized for perf/watt, perf/area
- Short 3 cycles L1 cache load-to-use latency
- MIPS64 r3 instruction set + >80 optimizing instructions

Examples of optimizing instructions added

- Atomic memory ops (increment, add, fetch-and-add, etc.)
- Insert/extract arbitrary bit fields within a word
- Branch if certain bit field contains a set bit or not
- Compare operands and set bit0 for equal / not equal
- Additional flavors of prefetch and cache hints
- Population count
- Unaligned load/store
OCTEON Cache Policies

L1 <-> L2 Cache: Write-through
- Excellent performance for networking and wireless applications
- Minimal per-CPU-core cost (power, area)
- Lowest possible read latencies
- Allows many outstanding stores, optimizations
- Automatic L1 error correction

L2 Cache <-> DRAM: Write-back
- Standard DDR3 DRAM DIMM’s are highest performance with block transfers
- Minimizes required DRAM bandwidth
- Don’t-write-back feature (e.g. for most of packet data) plus additional cache hints
CNF71XX Coherent Interconnect

64-bit CPU cores, split-transaction interconnect, L2 cache & controller all run at core frequency
CNF71XX Chip Floorplan

Baseband module:
- 6x DSP cores
- HW accelerators
- Memory structures
- Shared memory interconnect
- RFIC interface
- Timers
- Interrupts & control

High performance and efficient single-chip small cell base station SoC
Packet/Data Flow: LTE Downlink (DL) Processing

Communication between eNodeB and ePC:
1. ePC sends user packets to eNodeB over GTP-U tunnels. Packets arrive via GE port
2. Packet Input hardware handles all Ethernet packet receive, parsing headers to identify flow for packet order and QoS, allocating buffers, and DMAing packet data to buffers in L2 cache/memory
3. MIPS64 cores and hardware accelerators terminate the packet data, including IPSec decrypt

Communication between eNodeB and UE’s with 1ms TTI (transmission time interval):
1. MIPS64 cores and accelerators process PDCP, RLC and MAC protocol layers.
2. MAC layer processing schedules data and wireless PHY configuration for DL transmission
3. Baseband hardware DMAs data from L2 cache to its local memory
4. Downlink DSP cores and HABs complete DL processing and transmit data out via RF interface
Packet/Data Flow: LTE Uplink (UL) Processing

Communication between eNodeB and UE’s with 1ms TTI (transmission time interval):
1. PHY baseband processes UL traffic and detects random access from UE’s
2. PHY baseband DMAs processed UL data to L2 cache
3. MIPS64 cores and accelerators process MAC, RLC, and PDCP layers to terminate received UE traffic into packets.

Communication between eNodeB and ePC:
1. MIPS64 cores and hardware accelerators package received UE data into IP packets
2. Encrypt the IP packets using IPSec
3. Send the packets to ePC via GTP-U tunnels and via GE port
Mapping eNodeB to Multicore

- Example partitioning: LTE eNodeB AP
 - MAC and L1 driver on one core
 - Easy to meet LTE 1ms TTI
 - Quick response to PHY interrupts
 - RLC, PDCP, Transport on one core
 - Option to partition L2 cache to avoid cache pollution from control processing
- Control processing on one core
- 1 core free
 - Headroom for WiFi and service provider applications
- Small Cell Forum API compliant

Quad-core delivers required headroom and deterministic performance for real-time LTE and other processing
CNF71xx Complete End-to-end Validation

- STEP1 – PHY + Driver S/W + PLT (Physical Layer Test)
- STEP2 – PHY + Driver S/W + Scheduler
- STEP3 – L1 + L2 + L3
- STEP4 – PHY + Modem + Radio
- STEP5 – Core network + Basestation (L2/L3 stacks, S1 I/F)
- STEP6 – IOT (Interoperability Testing) in PHY (PLT + Modem + Radio + UE L1)
- STEP7 – IOT in MAC (w/ UE L1/L2)
- STEP8 – IOT in E2E (w/ UE over full protocol stacks)
- STEP9 – DL/UL Performance Measurements w/ UE

Platform ready

Radio Integration

Performance

End-to-End

High performance and efficient single-chip small cell base station SoC

Hot Chips 24

Kin-Yip Liu

Aug 2012
Summary

➢ OCTEON Fusion CNF71XX
 ▪ High performance “base station on a chip” SoC
 • LTE 20MHz, 150Mbps DL + 150Mbps UL, 2x2 MIMO, 128 users
 ▪ OCTEON Fusion = OCTEON multicore + baseband
 • Same OCTEON software for small to macro cells
 ▪ End-to-end interoperability and performance verified

➢ Optimized for Base station designs
 ▪ Delivers deterministic real-time performance, low power, and high integration, with significant compute headroom
 • 4x enhanced & efficient 64-bit (OCTEON MIPS) CPU cores
 • 6x Baseband optimized DSP vector processors
 • Many hardware accelerators
 • Optimized for short latencies and deterministic performance
Backup
Cavium: Company Summary

- Founded 2001
- NASDAQ IPO (CAVM) 2007
- Locations: US, India, China, TW
- 2011 Revenues: $259M, +26% YOY
- 5 year CAGR: ~50%
- Profitable with Strong Financials, Zero Debt

- Addressing Multi-billion dollar Networking, Communications, Storage and Digital Home markets.
- MIPS64 and ARM based Multi-core Processor SoCs; Multi-core Search and Security Processors
- All Top Networking, Wireless and Security Vendors use Cavium
Carriers coping with 1000x traffic increase and no extra revenue

Smart devices multiply traffic

- Smartphone = x 24*
- Handheld Gaming Console = x 60*
- Tablet = x 122*
- Mobile Phone Projector = x 300*
- Laptop = x 515*

* Monthly basic mobile phone data traffic

Source: Cisco VNI Mobile, 2011

Heterogeneous Radio Access Network
- Macro base stations are expensive (CAPEX and OPEX)
- Augment Macro with Small cell base stations to add capacity and coverage cost effectively
Before Multi-core SoCs became available, Base Station designs required many components, microcode programming on NPU, general purpose CPUs, FPGAs, and many development environments. High complexity...