Notices

Copyright © 2012 QUALCOMM Incorporated.
All rights reserved.

QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

Qualcomm reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed for any damages arising directly or indirectly by their use or application. The information provided in this document is provided on an “as is” basis.
Outline

- Small Cells: Motivation and Implications
- Cellular Access Point Evolution
- The FSM9xxx Chipset
- Design Challenges
- Selected Advanced Features
- FSM9xxx Based Access Point
- Power Consumption
- Summary and Closing Remarks
Traditional Cellular Coverage Model + Small Cells → New Cellular Topology

- Data Demand ↑
- Capacity ↑
- Limited Spectrum
- Improved User Experience

Small Cells with Macro Overlay

Neighborhood Femtocells

Ultra Compact Small Cell Access Point

FSM9xxx

- Interference Management
- Low Cost
- Low Power
- Advanced Features

New Requirements for Cellular Access Points
Cellular Access Point Evolution

- POWER
- ADVANCED FEATURES
- COST & SIZE

Copyright © 2012 QUALCOMM, Incorporated.
The FSM9xxx SoC

Key Stats
- 45 nm
- ~ 1.8 W for realistic full load
- Sampling commercially since April 2011

Key Features
- Small Cell Modem
- Integrated GPS
- Snapdragon™ Application Processor
- Security provisions
- Interference management
The FSM9xxx Architecture

- Memory Controllers
- Peripheral Interfaces
- Crypto Engines
- Hexagon™ Processor
- Snapdragon™ Processor

Interconnect Fabric

- Security Controller
- Small Cell Modems
- Downlink Receiver
- GPS
- Secure Boot Processor

- Digital Front End
- DACs
- ADCs
- DFE
- ADC
- DFE
- ADC
Snapdragon™ Processor

- Qualcomm’s 1st generation CPU, codenamed “Scorpion”
- 1 GHz
- ARMv7 ISA
- ~1.6x DMIPS/MHz w.r.t. ARM11
- Optimized for low power
- Open processor
- Handles L3, OA&M, etc.

Hexagon™ Processor

- Qualcomm’s custom DSP
- 600 MHz
- Multi-threaded
- Closed processor
- Handles L1 hardware control and L2
Design Challenges

- Need to combine base station and mobile functionality
 - Downlink processing for neighbor discovery and self-configuration
- Aggressive power consumption target
 - < 5W for full solution
- Stringent security requirements for residential deployment
 - Requires on-chip trusted execution environment
- Uncompromised modem performance
 - Up to 16 Multi-RAB UMTS users
 - 28 Mb/s downlink throughput
 - 5.7 Mb/s uplink throughput
 - Rx and Tx diversity
- Support for advanced interference management features
 - Additional processing chains for beaconing and uplink measurements
Advanced Signal Processing

Additional processing chains:
1) Downlink beaconing to facilitate system reselection
2) Uplink mobile and interference sensing

Simultaneous small cell service and downlink sniffing:
1) Dynamic interference management
2) Continuous VCTCXO disciplining

Small Cell Modem

Downlink Receiver

DFE

DACs

ADCs

ADC
Security

Interconnect Fabric

Hardware Accelerators for OTA Encryption and IPSec:
1) AES 128/192/256 bits
2) SHA1 to SHA256
3) SNOW 3G
4) Kasumi

Trusted Code:
1) Access to private data
2) Secure external storage in RAM

Secure Region for Trusted Execution Environment

Secure Boot Procedure
The FSM9xxx Chipset

FSM9xxx Baseband Processor
- FSM92xx SKUs for UMTS
- FSM98xx SKUs for CDMA2000

FTR8700 Transceiver
- 2x2 wideband (25 MHz) chains
- Global UMTS and CDMA2000 bands

RTR8605 Receiver
- Downlink receiver
- GPS receiver

Power Management IC
- Voltage regulators
- System clocks
FSM9xxx Based AP: Implementation

2.5 in. x 2.5 in., 6-layer Board
Small Cell Access Point Implementation
Power Consumption

Test Configuration:

- 8 user residential femtocell (FSM9208)
- HSDPA + EUL operation
- 1.9 GHz band
- 13 dBm maximum Tx power
- Single Tx/Rx
- GPS and downlink receiver active
- Measurements at room temperature

Total AP Power: 4.8 W
Data demand, capacity limits and economics are driving operators towards small cells

Small cells deployment models create new opportunities and introduce new design challenges

The FSM SoC provides a set of advanced features for improved system performance

This SoC enables a very compact, low power small cell AP design

The FSM9xxx chipset is Qualcomm’s 1st generation small cell solution, focused on 3G

This chipset is part of a portfolio of solutions that will include LTE, integrated Wi-Fi, and small cells evolution
Thank You!