A RAPIDLY CHANGING ENVIRONMENT

Users want content anytime, any platform, anywhere

Explosion of unstructured data

- 245 exabytes of data crossed Internet in 2010\(^1\)
- Growing to 1000 exabytes in 2015

Data center server demand >10M units by 2016\(^2\)

REVOLUTIONARY TRANSFORMATION

10 years ago: The Interactive Computing Revolution

- Graphics acceleration enabled
- Computing accessible to everyone
- Touch screen phones to cinematic 3D

Starting now: The Surround Computing Era

- Computers are everywhere
- Integrating into our environment
- Computing is part of everyday life, not a distinct activity
We are entering the **Surround Computing Era**

- Multi-platform – eyeglasses to room-size
- Fluid – realistic output, natural human input
- Intelligent – anticipates our needs

Profound implications for computer architecture

- Smarter clients – realistic, natural human communication
- Smarter clouds – orchestrate 10B devices in real-time
New Surround Compute Applications and Experiences – Accelerators Required!
The Surround Computing Era

Consistent Experiences Across Multiple Devices

The Cloud is the “Backbone” of Surround Computing

Surround Computing Cloud Services

Trust

Context

Analytic Compute

SMARTER CLOUDS
SMARTER CLOUDS – MANAGING UNSTRUCTURED DATA

Connected devices drive cloud computational loads

Datacenter optimized for Surround Computing

- **Scale** – to support tens of billions of connected devices
- **Acceleration** – back-end NUI, graphics, analytics
- **Security, privacy** – consistent end-to-end architecture
- **Real time** – latency is critical
- **Dense servers** – optimized for low power
THE WAY FORWARD

Surround computing

- Requires smarter clients and clouds
- Efficient datacenters

Heterogeneous engines

- Accelerate key client and server parallel workloads

Heterogeneous System Architecture (HSA)

- New silicon architecture making it all work together
CHANGING THE THINKING, CHANGING THE GAME

HSA – directly access acceleration hardware
- Unlocks the value of the GPU to software developers
- Program in C, C++, Java, Python, JavaScript, HTML5
- ISA agnostic

GPU = CPU in terms of processing capability
- Full programming language features
- Shared virtual memory: pointer is a pointer
- Coherency and context switching

HSA Foundation is an industry-wide initiative
BENEFITS OF HETEROGENEOUS SYSTEM ARCHITECTURE

- Power Efficient
- Easy to Program
- Future Looking
- Established Technology Foundation
- Open Standard
- Industry Support
HSA MEANS ACCELERATED PROCESSING UNITS (APU)

APU is the breakthrough app enabler

APU enables parallel compute and HSA

Emerging workloads require:
- Seamless execution across CPU/GPU
- Other specialized engines

APU is the platform of choice
AMD "STEAMROLLER" CORE

Multi-threaded microarchitecture

Expands computation efficiency

- Feed the cores faster
- Improve single-core execution
- Push on performance/watt
“STEAMROLLER”: FEED THE CORES FASTER

No compromises two thread performance

- Dedicated decode for each integer pipe
- Increase instruction cache size
- More efficient dispatch
- Enhance instruction pre-fetch

30% Ops per Cycle Improvement²

1. Based on AMD’s internal simulation results of average workloads of simulated performance on a number of tests, including those testing transaction processing. (Systems have to be publicly available to publish SPEC CPU Rate.)
2. Based on AMD’s internal simulation results of average workloads of simulated performance on a number of tests, including those digital media, productivity, and gaming applications.
“STEAMROLLER”: IMPROVING SINGLE-CORE EXECUTION

Design to tune up integer execution bandwidth:
- In concert with feeding the core faster
- More register resources, same latency
- More intelligent scheduling

Design to decrease average load latency:
- Minimum latency is only part of story
- Faster handling of data cache misses
- Accelerate store-to-load forwarding
“STEAMROLLER” PERFORMANCE/WATT DESIGN

Microarchitectural power optimization
- Lower average dynamic power
- Optimize for loop behaviors

Floating point rebalance
- Streamlined execution hardware
- Adjust to application trends

Dynamic resizing of L2 cache
- Adaptive mode based on workload

Diagram: "Steamroller" architecture showing components such as Fetch, Decode, Integer Scheduler, FP Scheduler, MMX Unit, and L1 DCache.
SMART DESIGNING FOR LOW POWER

Power efficiency is fundamental

- Long battery life
- Sleek, light weight form factors
- Cool and quiet computation
- Lower energy consumption and utility bills
- Lower data center TCO

Multi-faceted attack beyond process technology

- Optimize hardware with software applications
- Intelligent on-die power management
- Efficient design methodologies
Synergistic use of GPU compute + shared memory = lower power and higher performance

ARCHITECTURAL EFFICIENCY EXAMPLE WITH VIDEO ENHANCEMENT

MOTION DSP 720P

>4.0X Better Energy Efficiency

1. AMD ES-3200 APU)Llano-32nm, 2 cores @ 2400Mhz, GPU:2 CU @ 444Mhz), Windows 7 OS, MotionDSP vReveal Applications (http://www.vreveal.com/stabilization)
POWER MANAGEMENT: FINE GRAINED DYNAMIC POWER TRANSFERS

AMD incorporates activity-based power transfer between CPU and GPU

Enabled by sophisticated on-die microcontroller and sensors
POWER EFFICIENCY GAINS FROM IMPROVED DESIGN METHODS

“Bulldozer”
Part of the Floating Point Unit. Hand-drawn for maximum speed and density in 32nm

With High Density Library
The same blocks again, but rebuilt using a High-Density cell library to achieve 30% area and power reductions

15-30% lower energy per operation\(^1\) for power constrained designs – same order as a full process node improvement

1. Based on AMD’s internal analysis
FAST FABRICS TIE EVERYTHING TOGETHER

Great interconnect fabrics are needed

- Optimally process unstructured data
- Able to connect massive numbers of processors
- Lowest possible overhead
AMD FREEDOM FABRIC™ TECHNOLOGY

AMD off-chip interconnect fabric IP
- Designed to enable significantly lower TCO
- Links hundreds to thousands of SoC modules
- Shares hundreds of TBs storage and virtualizes I/O
- 160Gbps Ethernet Uplink
- Instructions Set Architecture agnostic
END-TO-END SYSTEM OPTIMIZATION
THE PURE SPEEDS AND FEEDS RACE IS OVER – IT’S ABOUT THE SOLUTION!

- End-to-end system view
- Acceleration of the application stack
- Agile delivery of tailored solutions
- Leveraging differentiated IP
THE NEXT WAVE – SURROUND COMPUTING REVOLUTION

- AMD products will enable the transition
 - HSA
 - Ambidextrous
 - Fast fabrics
 - Relentless focus on power efficiency

- AMD inspired the interactive computing revolution

- Now leading the way to surround computing
THANK YOU
DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2012 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other names and logos are used for informational purposes only and may be trademarks of their respective owners.