SPARC64™ XIIfx: Fujitsu’s Next Generation Processor for HPC

August 11, 2014
Toshio Yoshida
Next Generation Technical Computing Unit
Fujitsu Limited
Agenda

- Fujitsu Processor Development
- SPARC64™ XIfx
- Design Concept and Processor Overview
- Node Architecture
- HPC-ACE2: ISA enhancements
- Microarchitecture
- Enhanced VISIMPACT and Sector Cache
- Assistant Core
- Performance
- RAS
- Summary
Fujitsu Processor Development

HPC
- **2011**: SPARC64™ VIII fx
 - K computer
 - 8 Cores
 - HPC-ACE
 - DIMM
 - Tofu interconnect

- **2012**: SPARC64™ IX fx
 - FX10
 - 16 Cores
 - HPC-ACE
 - DIMM
 - Tofu interconnect

- **2013**: SPARC64™ XIfx
 - Post-FX10
 - 32 Cores
 - + 2 Assistant Cores
 - HPC-ACE2
 - HMC
 - Tofu interconnect

UNIX Server
- **2011**: SPARC64™ XVIIIfx
 - 16 cores
 - SMT / SWoC
 - 3GHz

- **2012**: SPARC64™ X
 - 16 cores
 - SMT / SWoC+
 - 3.7GHz

- **2014**: SPARC64™ X+x
 - 16 cores
 - SMT / SWoC+
 - 3.7GHz

Mainframe
- **2011**: GS21
 - 2600
Agenda

◆ Fujitsu Processor Development
◆ SPARC64™ XI fx
 ■ Design Concept and Processor Overview
 ■ Node Architecture
 ■ HPC-ACE2: ISA enhancements
 ■ Microarchitecture
 ■ Enhanced VISIMPACT and Sector Cache
 ■ Assistant Core
 ■ Performance
 ■ RAS
◆ Summary
Design Concept of SPARC64™ XIfx

- Designed for massively parallel supercomputer systems
 - High performance for wide range of real applications
 - High scalability
 - Low power consumption
 - Groundwork for EXA scale computing

- Enhance and inherit K computer features
 - Stand-alone scalar many-core architecture
 - Enhanced VISIMPACT and Sector cache
 - On-chip integrated Tofu interconnect 2

- Introduce new technologies to EXA scale
 - Wider SIMD enhancements
 - Leading-edge memory technology
 - Cores dedicated for non-computation operation
SPARC64™ XI fx Chip Overview

- **Architecture Features**
 - 32 computing cores + 2 assistant cores
 - HPC-ACE2
 - 24 MB L2 cache
 - HMC, Tofu2, PCI Gen3

- **20nm CMOS**
 - 3,750M transistors
 - 1,001 signal pins
 - 2.2GHz

- **Performance (peak)**
 - 1.1TFlops
 - HMC 240GB/s x 2(in/out)
 - Tofu2 125GB/s x 2(in/out)
Agenda

◆ Fujitsu Processor Development
◆ SPARC64™ Xi fx
 ■ Design Concept and Processor Overview
 ■ Node Architecture
 ■ HPC-ACE2: ISA enhancements
 ■ Microarchitecture
 ■ Enhanced VISIMPACT and Sector Cache
 ■ Assistant Core
 ■ Performance
 ■ RAS
◆ Summary
Node Architecture

• Stand-alone scalar many-core with wider SIMD
 – No accelerator

• Non-hierarchical and high bandwidth memory
 – 8x HMCs (32GB, 240GB/s x2 (in/out))

• Isolation of non-computation operation for jitter reduction
 – 32 Computing cores
 – 2 Assistant cores
 • Daemon, IO, MPI asynchronous communication, etc.
 • Sector cache is used for assistant core to avoid cache pollution
 – Computing cores and Assistant cores keep cache coherency

• Single OS manages computing and assistant cores
 – Single OS minimizes memory management overhead
Agenda

◆ Fujitsu Processor Development
◆ SPARC64™ XI fx
 ■ Design Concept and Processor Overview
 ■ Node Architecture
 ■ HPC-ACE2: ISA enhancements
 ■ Microarchitecture
 ■ Enhanced VISIMPACT and Sector Cache
 ■ Assistant Core
 ■ Performance
 ■ RAS
◆ Summary
HPC-ACE2: ISA enhancements

• Wider SIMD enhancements from K computer / FX10
 – 256-bit wide SIMD (64-bit x 4 / 32-bit x 8)
 – More integer operations
 – Stride load/store
 – Indirect load/store
 – Compress
 – Round
 – Permutation
Wider SIMD Extensions

- 256-bit wide SIMD with 128 FPRs
 - 64-bit (DP: Double Precision) x 4 SIMD
 - 32-bit (SP: Single Precision) x 8 SIMD
- DP 3.2x, SP 6.1x faster than SPARC64™ IXfx in basic kernels
 - Improved L1 cache pipelines
 - Higher frequency 1.848GHz -> 2.2GHz

[Graph showing normalized performance per core with DP 3.23x / SP 6.18x (average) for basic kernels]
Built-in Functions

- Built-in functions accelerated by
 - HPC-ACE2 instructions
 - 256-bit wide SIMD
 - Rounding / Bit manipulation / Exponential auxiliary instructions
 - Microarchitectural enhancements

Built-in Functions Performance per Core

- Rounding
- L1 cache improvement
- Bit manipulation
- Exponential
- 256-bit wide SIMD

Normalized Performance

SPARC64™ XIfx

3.64x (average)
Stride Load/Store Instructions

- Stride access is frequently used in various HPC apps.
 - Support from 2 to 7-element stride width
- 3.6x faster than SPARC64™ IXfx

Stride load Performance

E.g. Stride load @ stride width = 3

lddst,s [%l0]@stride 3, %f0

Normalized Performance

Memory

<table>
<thead>
<tr>
<th>%l0+0</th>
<th>i[0]</th>
<th>i[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>+32</td>
<td></td>
<td>i[2]</td>
</tr>
<tr>
<td>+64</td>
<td></td>
<td>i[3]</td>
</tr>
</tbody>
</table>

SPARC64™ XLfx

SPARC64™ IXfx
Indirect Load/Store Instructions

- Indirect load and store instructions for list accesses
 - List accesses appear in wide ranges of HPC apps.
- More than 1.6x faster than SPARC64™ IXfx

![Indirect Load/Store Performance Graph]

E.g. Indirect load

\[
\text{lddid,s [\%f0, \%f2)}
\]

Memory

\[
\text{A, i[0]}
\]
\[
\text{B, i[1]}
\]
\[
\text{C, i[2]}
\]
\[
\text{D, i[3]}
\]

Normalized Performance

- 1.67x faster
- 1.92x faster

SPARC64™ XIfx
Agenda

◆ Fujitsu Processor Development
◆ SPARC64™ XIfx
 ■ Design Concept and Processor Overview
 ■ Node Architecture
 ■ HPC-ACE2: ISA enhancements
 ■ Microarchitecture
 ■ Enhanced VISIMPACT and Sector Cache
 ■ Assistant Core
 ■ Performance
 ■ RAS
◆ Summary
SPARC64™ XIfx Core Pipeline

- 2x 256-bit SIMD FMAs + 4x ALUs (shared with 2 AGENs)
- 2x 256-bit SIMD LOADs or 1x 256-bit SIMD STORE
- Fundamental pipelines are based on SPARC64™ X+
 - Superscalar, Out-of-Order, branch prediction, etc.
- No multithreading

- 2x 256-bit SIMD LOADs or 1x 256-bit SIMD STORE
- Fundamental pipelines are based on SPARC64™ X+
 - Superscalar, Out-of-Order, branch prediction, etc.
- No multithreading
Many-Core Architecture

- **SPARC64™ XIfx** has 2 CMGs (Core Memory Group)
 - CMG consists of 17 cores, L2 cache and 2 memory controllers (MAC)
 - Two CMGs keep cache coherency by ccNUMA with on-chip directory
 - 32GB memory capacity
 - To bind a process in a CMG is recommended

```
CMG*0 (17cores)
  CC 0 CC 1 CC 2 CC 15 AC
MAC
L2 cache 12MB 24ways
HMC
HMC
CPU

CMG*1 (17cores)
  CC 0 CC 1 CC 2 CC 15 AC
MAC
L2 cache 12MB 24ways
HMC
HMC

PCI controller
Tofu2 controller
```

- **SPARC64™ XIfx**
High Bandwidth

- High bandwidth cache, memory and Tofu2
 - 2x Cache bandwidth / Core
 - Compared to SPARC64™ IXfx
 - 8x HMC
 - 15 Gbps
 - 16 lanes
 - 8 ports
 - Tofu2
 - 25 Gbps
 - 4 lanes
 - 10 ports
Agenda

◆ Fujitsu Processor Development
◆ SPARC64™ XIfx
 ■ Design Concept and Processor Overview
 ■ Node Architecture
 ■ HPC-ACE2: ISA enhancements
 ■ Microarchitecture
 ■ Enhanced VISIMPACT and Sector Cache
 ■ Assistant Core
 ■ Performance
 ■ RAS
◆ Summary
Enhanced VISIMPACT

• Advantages of Hybrid Parallelization
 – To reduce communication cost in highly parallel programs
 – To increase user memory space by reducing communication buffer

• VISIMPACT* (introduced in FX1)
 – Automatic parallelization technology by Fujitsu’s compiler
 – Hardware barrier for fast synchronization

• Enabling 8 sets of Hardware barriers between 32 cores
 – Optimum combination of # Threads and # Processes depends on apps.
 – Any combinations of T(Threads) and P(Processes) are supported
 • 32 T(Thread) x 1 P(Process), 16 T x 2 P, 8 T x 4 P, etc.
 – The goal is heterogeneous hybrid parallelization for load imbalance and multi physics

*Virtual Single Processor by Integrated Multi-core Parallel Architecture
Effect of VISIMPACT

- Lower memory usage
 - By reducing communication buffer for MPI
- Higher performance
 - By reducing MPI communication cost

Memory usage and Performance of #Threads x #Processes

Normalized Memory Usage

- Lower Usage

Normalized Performance

- Higher Performance
Enhanced Sector Cache

- **Sector Cache** (introduced in K computer)
 - Cache line is replaced to keep specified sector size when cache miss occurs

- Like ‘Local Memory’
 - Leave the reusable data on cache by dividing cache into segments

- Unlike ‘Local Memory’
 - No need for a dedicated address
 - No penalty to save and restore in context switch

- **SPARC64™ XIfx** supports 4 sectors in L1 cache (per core) and L2 cache (per CMG) respectively
 - More usable than **SPARC64™ IXfx** of 2 sectors in L1 and L2 respectively
 - Each sector size can be specified separately
Agenda

◆ Fujitsu Processor Development
◆ SPARC64™ XI fx
 ■ Design Concept and Processor Overview
 ■ Node Architecture
 ■ HPC-ACE2: ISA enhancements
 ■ Microarchitecture
 ■ Enhanced VISIMPA CT and Sector Cache
 ■ Assistant Core
 ■ Performance
 ■ RAS
◆ Summary
Assistant core

- Assistant core serves Daemon, IO, MPI asynchronous communication instead of computation
 - Each CMG has an assistant core allocated on 17th core
 - Sector cache within L2 cache allocates one sector to assistant core to avoid cache pollution
- Minimize performance degradation in large systems by jitter reduction

CPU block diagram

Perf degradation ratio by jitter (model)

- Performance improvement
- # of nodes
 - SPARC64 IXfx
 - SPARC64 XIfx
Agenda

◆ Fujitsu Processor Development
◆ SPARC64™ XIfx
 ◆ Design Concept and Processor Overview
 ◆ Node Architecture
 ◆ HPC-ACE2: ISA enhancements
 ◆ Microarchitecture
 ◆ Enhanced VISIMPACT and Sector Cache
 ◆ Assistant Core
 ◆ Performance
 ◆ RAS
◆ Summary
Performance

- SPARC64™ XIfx boosts performance up by ISA and microarchitectural enhancements
 - 97% execution efficiency for DGEMM
 - Sector cache realizes the same effect as 2.5x L1 cache size
 - 1.7x faster per core than SPARC64™ IXfx in real HPC applications such as fluid dynamics

Real HPC Applications Performance per Core

- 33% up by ISA
- 40% up by uArch
 Agenda

◆ Fujitsu Processor Development
◆ SPARC64™ XIfx
 ▪ Design Concept and Processor Overview
 ▪ Node Architecture
 ▪ HPC-ACE2: ISA enhancements
 ▪ Microarchitecture
 ▪ Enhanced VISIMPACT and Sector Cache
 ▪ Assistant Core
 ▪ Performance
 ▪ RAS
◆ Summary
Reliability, Availability, Serviceability

- HPC system requires extensive RAS capability of CPU and interconnect
- SPARC64™ XIfx inherits mainframe-level RAS features
 - # checkers in CPU increased to ~92,900
 - Tofu2 buses support self-recovery and lane dynamic degradation

<table>
<thead>
<tr>
<th>Units</th>
<th>Error Detection and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache (Tags)</td>
<td>ECC, Parity & Duplicate</td>
</tr>
<tr>
<td>Cache (Data)</td>
<td>ECC, Parity</td>
</tr>
<tr>
<td>Registers</td>
<td>ECC (INT/FP), Parity (Others)</td>
</tr>
<tr>
<td>ALUs</td>
<td>Parity, Residue</td>
</tr>
</tbody>
</table>

Other RAS features
- Cache dynamic degradation
- Hardware Instruction Retry
- Lane dynamic degradation for Tofu2

Green: 1-bit error Correctable
Yellow: 1-bit error Detectable
Gray: 1-bit error Harmless
Agenda

◆ Fujitsu Processor Development
◆ SPARC64™ XIIfx
 ■ Design Concept and Processor Overview
 ■ Node Architecture
 ■ HPC-ACE2: ISA enhancements
 ■ Microarchitecture
 ■ Enhanced VISIMPACT and Sector Cache
 ■ Assistant Core
 ■ Performance
 ■ RAS
◆ Summary
Summary

◆ SPARC64™ XI[f]x is Fujitsu’s latest SPARC processor, designed for massively parallel supercomputing systems.

◆ Enhance and inherit K computer features
 ◆ Stand alone scalar many-core architecture
 ◆ VISIMPACT and Sector Cache
 ◆ On-chip integrated Tofu2

◆ Introduce new technologies to EXA scale
 ◆ HPC-ACE2
 ◆ HMC
 ◆ Assistant cores

◆ SPARC64™ XI[f]x has improved performance of real HPC applications significantly.

◆ As a next step, Fujitsu goes forward to EXA scale supercomputing.
Abbreviations

- **SPARC64™ XIfx**
 - RSA: Reservation Station for Address generation
 - RSE: Reservation Station for Execution
 - RSF: Reservation Station for Floating-point
 - RSBR: Reservation Station for Branch
 - GUB: General-purpose Update Buffer
 - FUB: Floating-point Update Buffer
 - GPR: General-Purpose Register
 - FPR: Floating-Point Register
 - CSE: Commit Stack Entry
 - EAG: Effective Address Generator
 - EX: Execution unit (Integer)
 - FL: Floating-point unit
 - HPC-ACE: High Performance Computing-Arithmetic Computational Extensions
 - HMC: Hybrid Memory Cube
 - Tofu: Torus-Fusion