Implementing Software Defined Radio on the Parallella

by Andreas Olofsson (HOTCHIPS-2015)
What is Software Defined Radio? (SDR)

"Radio in which some or all of the physical layer functions are software defined" --Wireless Innovation Forum
Not just "radio"!

THE ELECTROMAGNETIC SPECTRUM

Wavelength (in meters)

Size of a wavelength

Common name of wave

RADIO WAVES

INFRARED

VISIBLE

ULTRAVIOLET

“HARD” X RAYS

“SOFT” X RAYS

MICROWAVES

Sources

Frequency (waves per second)

Energy of one photon (electron volts)
Canonical SDR architecture

Software Defined Radio

- Smart Antenna
- Flexible RF Hardware
- IF
- ADC
- DAC
- Channelization and Sample Rate Conversion
- Processing
 - Hardware: FFGAs, DSPs, ASICs

RF/IF
A/D
D/A
Control
Digital Front End
Base Band Processing
Why SDR is so cool (& hot)!!

<table>
<thead>
<tr>
<th></th>
<th>HW</th>
<th>SDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compilation</td>
<td>Months</td>
<td>Minutes</td>
</tr>
<tr>
<td>Cost</td>
<td>$50K</td>
<td>$500</td>
</tr>
<tr>
<td>Hurdle</td>
<td>RF, HW, SW</td>
<td>SW</td>
</tr>
<tr>
<td>Real time configurable</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Future proof</td>
<td>No</td>
<td>yes</td>
</tr>
</tbody>
</table>
SDR Opportunities

(limited resource if there ever was one)
SDR Application Examples

- Amateur radio (HAM, etc)
- Radio astronomy
- Legacy modem emulation
- Wireless comms (GSM, LTE)
- Wireless research (5G)
- Spectrum analysis
- Teaching DSP
SDR Challenges

- Latency (microsecond)
- Throughput (gigabits)
- Size, Weight, Power (SWAP)
- Cost ($20-->$30,000)
Parallella Introduction

16 Core Epiphany Coprocessor
Zynq Dual Core ARM A9 Processor (with FPGA logic)
1GB SDRAM
Power Source Jumper (short pin 1 & 2)

5VDC
uUSB (power only)
Gigabit Ethernet

uHDMI*
uUSB*

Power LED
Operation LED
Serial Connector

* Not on Pi600-xxx models
Parallella Specs (parallella.org)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>~30 GFLOPS</td>
</tr>
<tr>
<td>Memory</td>
<td>1GB DDR3</td>
</tr>
<tr>
<td>IO</td>
<td>~25 Gb/s (48 GPIO)</td>
</tr>
<tr>
<td>Size</td>
<td>credit-card</td>
</tr>
<tr>
<td>Weight</td>
<td>38g</td>
</tr>
<tr>
<td>Power</td>
<td><5W</td>
</tr>
<tr>
<td>Cost</td>
<td>$99 -> $249</td>
</tr>
</tbody>
</table>
Parallella IO

- 0.5mm Samtec connectors
- 48-pin/24Gbps FPGA link
- 2 Epiphany links (20Gbps)
- JTAG, UART, I2C, SPDIF
- LVDS/CMOS
- Adjustable I/O voltage
Porcupine Breakout Board

- "Hackable", easy access 0.1" headers
- Raspberry Pi camera connector
- PMOD, JTAG, elink connectors
Parallella SDR Platform

- 70MHz - 6GHz
- ADI FCOMMS* board (FMC)
- Parallella carrier
- FMC adapter board
- 100% Open source SW
AD9361 Overview

- RF 2 × 2 transceiver
- 12-bit DACs and ADCs
- 70 MHz to 6.0 GHz
- TDD/FDD support
- BW: <200 kHz to 56 MHz
- Noise figure < 2.5 dB
- Independent AGC
SDR Architecture
(RF + FPGA + CPU + DSP)
Xilinx Zynq SoC Architecture

- **ARM SOC:**
 - Dual A9 CPUs (up to 1GHz)
 - GigE, USB, UART, I2C, ...
 - Flash & DDR3 controller

- **Programmable Logic:**
 - I/O: (86 --> 470)
 - LUTS: (17 --> 277K)
 - BRAM: (0.24MB --> 3MB)
The Epiphany Architecture

- 2D array of RISC cores (MIMD)
- Mesh Network-On-Chip
- Point to point, scalable to "infinity"
- ANSI-C, MPI, OpenMP, OpenCL
- 50 GFLOPS/W in 28nm
Epiphany Chip Features

- 16 x 1GHz RISC processors (65nm)
- 32 bit IEEE floating point
- 512KB on-chip SRAM
- North, East, West, South IO links
- 32 GFLOPS peak performance
- 512 GB/s local memory BW
- 128 GB/s NOC bandwidth
- 8 GB/s IO bandwidth
Epiphany RISC DSP

- 32 bit, dual issue in order, 5/8 stage pipeline
- 16/32 bit instruction set
- 64 general purpose registers
- IEEE754 floating point (FMADD, FMUL, ..)
- Nested interrupts, 2-Channel DMA, debug unit
- **ISA**: B, BL, JR, JAL, LDR, STR, TESTSET, ADD, SUB, ASR, LSR, LSL, ORR, AND, EOR, BITR, FADD, FSUB, FMUL, FMADD, FMSUB, FABS, FIX, FLOAT, MOV, MOVT, MOVFS, NOP, IDLE, RTS,
Epiphany Memory System

- 32 bit addressing
- Shared flat address space, no HW caches!
- Upper 12 bits specify coordinates in 2D map (64 x 64 mesh)
- 32KB SRAM per core in E16G301. Accessible by all cores.
- 4 independent 64 bit local memory transactions per cycle
- Fetch, load, DMA, emesh supports 32 byte access per cycle
- Strict local memory ordering, VERY relaxed remote ordering.
Epiphany Network-On-Chip

- 3 meshes: on-chip writes, read requests, off-chip writes
- 104 bit atomic single cycle packets
- Non-blocking round robin routing
- x/y static routing
- 8 bytes transferred per cycle (on chop write mesh)
- 1.5 clock cycle latency / hop
- Extends off chip to I/O (elinks)
Parallella SDR Software
Free Software Resources

- **GNURadio**: Open source SDR platform
- **Epiphany SDK**: Epiphany compiler, debugger
- **Vivado**: FPGA synthesis tools
- **COPRTHR**: OpenCL, MPI, Threads
- **OpenMP**: OpenMP 4.0 device
- **PAL**: Optimized open source math/dsp library
Creating a Parallella SD card

- Download image
- Insert SD card in laptop
 - $ gunzip -d <releasename>.img.gz
 - $ df -h
 - $ umount <sd-partition-path>
 - $ sudo dd bs=4M if=<release-name>.img of=<sd-device-path>
 - $ sync
- Remove SD card and insert into Parallella
Install Vivado

• Download Vivado from Xilinx (Choose the web installer)

$ sudo unlink /bin/sh
$ ln -s /bin/bash /bin/sh
$ chmod u+x ./Xilinx_Vivado_SDK_2015.2_0626_1_Lin64.bin
$./Xilinx_Vivado_SDK_2015.2_0626_1_Lin64.bin
$ source 2015.2/settings64.csh
Install GNURadio Dependencies

$ sudo apt-get -y install git-core cmake g++ python-dev swig \
pkg-config libfftw3-dev libboost1.55-all-dev libcppunit-dev \nlibgsl0-dev libusb-dev python-wxgtk2.8 \npython-numpy python-cheetah python-lxml doxygen libxi-dev \npython-sip libqwt-dev libfontconfig1-dev \nlibxrender-dev python-sip python-sip-dev
Download GNU Radio (from ADI)

$ sudo dd if=/dev/zero bs=1MiB of=/home/<user>/swap.img
$ sudo mkswap /home/<user>/swap.img
$ sudo swapon /home/<user>/swap.img
$ git clone https://github.com/analogdevicesinc/gnuradio.git
$ git clone https://github.com/analogdevicesinc/libiio.git
$ cd gnuradio
$ git checkout master
Building software

$ mkdir gnuradio/build; cd gnuradio/build
$ cmake -DENABLE_DOXYGEN:bool=false ..
$ make -j2
$ sudo make install
$ sudo make -C gr-iio install
$ sudo ldconfig
$ cd ~/libiio
$ cmake ./
$ make all
$ sudo make install
Shortcut...b/c life is too short

PARALLELLA SDR IMAGE
REFERENCES

FMCOMMS3 User Guide (ADI)

GNURadio Installation (ADI)

IIO-scope User Guide (ADI)

SD-CARD WIKI (ADI)

ADI at FOSDEM
SDR demo

- FCOMMS2 + Adapter board + Parallella
- ARM + FPGA
- ADI Oscilloscope application
- ...

Epiphany demo

Single core FFT prepared by Sylvain Munaut (SDR guru)

Source code

<table>
<thead>
<tr>
<th>Platform</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>fftw (ARM A9)</td>
<td>221.977509 Mflops</td>
</tr>
<tr>
<td>fftw (A9-Neon)</td>
<td>409.619659 Mflops</td>
</tr>
<tr>
<td>epiphany C</td>
<td>170.642029 Mflops</td>
</tr>
<tr>
<td>epiphany ASM</td>
<td>668.507629 Mflops</td>
</tr>
</tbody>
</table>