The Road to 5G:
Providing The Connectivity Fabric for Everything

Matt Grob
Executive Vice President, Qualcomm Technologies, Inc.
and Chief Technology Officer, Qualcomm Incorporated
Evolution of the Internet

Yesterday

Today

Tomorrow
Providing the connectivity fabric for everything

- Human communication: Scaling to connect virtually anything, anywhere
- Devices as end-points: New and intelligent ways to connect & interact
- Best effort data services: Also, new kinds of control & discovery services
- Disparate networks: Convergence of access, spectrum types, services

Requires a new connectivity paradigm
Mobile has made a leap every ~10 years
Qualcomm has played an increasing role in fueling these leaps

- **2G**
 - Digital voice

- **3G**
 - Mobile broadband

- **4G**
 - Faster and better
5G

Connecting new industries and devices

Empowering new user experiences

Enabling new services

Scalable

Edgeless

Unified
5G will be scalable across an extreme variation

- Deep coverage
- Strong security
- Ultra-high reliability
- Ultra-low latency
- Ultra-low energy
- Ultra-low complexity
- Ultra high density
- Extreme capacity
- Extreme peak rates
- Mission critical services
- Enhanced mobile broadband
- Massive number of things
- Deep awareness
- Flawless mobility
- Extreme peak rates
- Extreme capacity
- Ultra high density
- Ultra-low latency
- Ultra-high reliability
- Strong security
- Ultra-low energy
- Ultra-low complexity
- Deep coverage

Enhanced mobile broadband

Mission critical services

Massive number of things

Deep awareness

Ultra-low latency

Ultra-high reliability

Strong security

Ultra-low energy

Ultra-low complexity

Deep coverage

5G will be scalable across an extreme variation
New ultra-reliable, low-latency, mission critical services

- **High Reliability**: Extremely low loss rate
- **Low Latency**: Down to 1ms e2e latency
- **High Resilience**: Multiple links for failure tolerance and mobility

- Medical
- Industrial Automation
- Energy / Smart Grid
- Aviation and Robotics
- Automotive

5G
Scaling down to connect low cost ‘things’

- Power Efficient: Multi-year battery life
- Low Complexity: Low device and network cost
- Long Range: Deep coverage

- Wearables & fitness
- Remote sensors/actuators
- Smart cities/buildings
- Smart energy management
- Smart homes
- Object tracking

5G

Smart cities / buildings
Smart homes
Remote sensors/actuators
Smart energy management
Object tracking

Wearables & fitness
Scaling up to extreme mobile broadband

- **Extreme Throughput**: Multi-Gbps
- **Low Latency**: Down to 1ms e2e latency
- **Uniform Capacity**: Regardless of proximity to tower

Applications:
- UHD video streaming
- 3D/UHD telepresence
- Tactile Internet
- Virtual reality
- Venues
Multiple enablers toward edgeless connectivity

Uniform experiences—coverage, mobility, capacity—with no perception of ‘cell edges’

- Multi-hop to extend coverage
- Integrated access and backhaul, relays
- Device-to-device discovery and communications
- Coordinated spatial techniques
- Beam forming
- Massive MIMO
A unified, more capable 5G platform for the next decade
Configurable for specific services, verticals, deployment scenarios or phased rollout

Unified Air Interface—a common framework
- Wide area IoT
- Mobile Broadband
- Ultra-reliable Control

Multi-connectivity—including 4G and Wi-Fi

Scalable, multi-access core network
Flexible deployment, services, security and subscription models
- Residential
- Venue / neutral hosts
- IoT Vertical
- Traditional operator; mobile broadband, multiple IoT verticals, mission critical services
5G will build on the OFDM family foundation

Unified Air Interface

- FDD and TDD
- Synchronous and asynchronous
- Orthogonal and Non-orthogonal
- Scheduled, and opportunistic
- Licensed/shared/unlicensed spectrum

OFDM family excellent for mobile broadband and other use cases, e.g. ultra-reliable services

Other non-orthogonal methods may be proposed for specific use cases, e.g. IoT uplink
Unified 5G design across spectrum types and bands

- **Licensed Spectrum**
 - Cleared spectrum
 - Exclusive use

- **Shared Licensed Spectrum**
 - Complementary licensing
 - Shared exclusive use

- **Unlicensed Spectrum**
 - Multiple technologies
 - Shared use

Below 1 GHz: longer range, massive number of things

Below 6 GHz: mobile broadband, mission critical, and possibly backhaul

Above 6 GHz including mmWave: for both access and backhaul, shorter range
Multi-dimensional multi-connectivity

Across technologies

Wi-Fi

4G RAN

5G access

Across any access node

Across devices
In parallel: driving 4G and 5G to their fullest potential

- Fully leverage 4G investments
- Improve cost and energy efficiency
- Enable a wide range of new services
- A unified, much more capable platform

- Further backwards-compatible 4G enhancements

Timeline:
- 2010
- ~2020
- 2030
Scaling LTE for the Internet of Things

High performance
- Fast peak rates
- More capacity
- Enhanced coverage

Ultra-efficient
- Reduced complexity
- Long battery life

LTE Advanced CA

LTE Cat-0, LTE-M, C-IOT
LTE Broadcast

Virtually unlimited number of users can receive same content
LTE Broadcast
Virtually unlimited number of users can receive same content

Simulation results

*Throughput gain vs. unicast

Avg. users per site consuming same content

Source: Qualcomm Technologies, Inc. Research. 2GHz carrier frequency, site-to-site distance = 500 meter, cluster eMBMS deployment (19 sites in single frequency network), comparison with unicast is based on the same amount of resource allocation.
LTE Direct

- Scalable
- Universal
- Always-on
- Global

Yoga classes
Social event
Book signing
Free live show
Used bike for sale
Room for rent
V2V
Aggregating licensed and unlicensed spectrum to deliver greater performance in 4G

LTE in unlicensed spectrum
(for new small cells using 5GHz)

- **Carrier aggregation**
- **Gain** Median throughput

Operator A
Wi-Fi

Operator B
LTE in unlicensed

≥1x

>2x

Coexists well with Wi-Fi

Unlicensed spectrum
Licensed spectrum

Assumptions: Two operators. 48 Pico+108 Femto cells per operator. 300 users per operator with 70% indoor. 3GPP Bursty model. 12x40MHz @ 5GHz for unlicensed spectrum. LTE 10 MHz channel at 2 GHz; 2x2 MIMO, Rank 1 transmission, eICIC enabled; LTE-U - Phase II, 2x2 MIMO (no MU-MIMO); Wi-Fi - 802.11ac 2x2 MIMO (no MU-MIMO), LDPC codes and 256QAM.)
LTE-U is a good neighbor – not adversely affecting Wi-Fi

Using adaptive duty cycle (CSAT) for fair coexistence

Wi-Fi Average throughput

Wi-Fi performance improved

Increasing LTE-U penetration

CSAT - Carrier Sensing Adaptive Transmission
MuLTEfire™

4G LTE-like performance
Enhanced capacity and range
Improved mobility, quality of experience

Wi-Fi-like deployment simplicity
Operates in unlicensed spectrum
Leaner, self-contained¹ network architecture

¹ Does not require a traditional core network
Making the best use of licensed and unlicensed spectrum

Licensed spectrum
With opportunistic use of unlicensed

Unlicensed spectrum
LTE-based technology

Unlicensed spectrum
802.11 technology

LTE/LTE Advanced
(Including LTE-U/LAA, LTE/Wi-Fi agg.)

MuLTEfire™

Wi-Fi 802.11ac/ad/ax
The expanding role of LTE Advanced—a new paradigm

Scale to connect the Internet of Things
- Carrier Aggregation
 - High performance
- Ultra efficient
 - Cat-0, LTE-M

Bring new ways to connect & interact
- Evolving the LTE Direct Platform
 - Device-to-Device
- Multi-hop
- Vehicle-to-Vehicle / Infrastructure

Empower new classes of services
- Mission-critical control
 - LTE ULL
- Discovery
 - LTE Direct Proximity
- Public Safety
 - LTE Direct MCPTT

Create a converged connectivity platform
- Link aggregation
 - Converged LTE + Wi-Fi
- Converged spectrum solutions
- Converged deployment models
- LTE-U and LSA
- MuLTEfire™
Qualcomm fuels major technology shifts in the industry
Anticipating the big challenges and investing early on to solve them

$36B Cumulative R&D*

Digitized mobile communications
From analog to digital

Redefined computing
From desktop to smartphones

*As of Apr. '16, Qualcomm Technologies, Inc. data
Thank you

Follow us on: f t in t

For more information, visit us at: www.qualcomm.com & www.qualcomm.com/blog