Professional H.265/HEVC Encoder LSI Toward High-Quality 4K/8K Broadcast Infrastructure

Code Name: NARA (Next-generation encoder Architecture for Real-time HEVC Application)

Hiroe Iwasaki, Takayuki Onishi, Ken Nakamura, Koyo Nitta, Takashi Sano, Yukikuni Nishida, Kazuya Yokohari, Jia Su, Naoki Ono, Ritsu Kusaba, Atsushi Sagata, Mitsuo Ikeda, and Atsushi Shimizu

NTT Media Intelligence Laboratories
NTT Corporation
Outline

• Introduction and Background
 • History of NTT’s Video CODEC LSIs
 • Roadmaps toward 4K/8K UHDTV
 • Latest video coding standard (HEVC)
 • Requirements for 4K/8K broadcasting

• NARA Architecture

• NARA Key Features and Functions
 • Single-chip configuration
 • Multi-chip configuration

• NARA Chip Implementation

• Target Applications

• Conclusion
History of NTT’s video CODEC LSIs

Analog Digital

SDTV HDTV

MPEG2 H.264

HDTV UHDTV

H.264 H.265

NHK/NTT-COM Board

MPEG-2/H.264 Transcoder

HDTV H.264 Decoder

ISIL-II ('07) (CoolChips X)

SARA ('07) (HotChips19)

NARA ('15)

HDTV MPEG-2 Encoder

HDTV H.264 Encoder

SARA/D ('08) (CoolChips XI)

HDTV MPEG-2 Decoder

HDTV MPEG-2 Decoder

SuperENCII ('00) (HotChips7)

SuperENC ('98) (HotChips10)

Encoder PCI Board

Encoder PC Card (ICCE2000)

Portable HDTV Encoder (ICCE2001)

NHK/NTT-COM Board

ISIL ('02) (CICC2003)

VASA ('02) (HotChips14)
Roadmap toward 4K/8K UHDTV

- 4K test broadcast over satellite in 2014, 8K in 2016
- 4K/8K commercial broadcast TV programs in 2020
HEVC – High Efficiency Video Coding

- The latest video coding standard (Jan. 2013, Range extensions Apr. 2014)
- Achieves half bit rate compared to H.264, 1/4 to MPEG-2, key technology for 4K/8K

Video coding standards history:

- H.261 (ISDN videophone)
- MPEG-2 (Digital TV, DVD)
- MPEG-4 (Cellular videophone)
- H.264 (Blu-ray, camcorder)
- H.265/HEVC

Year:
- 1990
- 1996
- 1999
- 2003
- 2013
What is HEVC?

- Existing encoding flows, but “adaptive and exhaustive” combination of prediction tools

Video frames → Transform → Quantize → Entropy coding → Encoded stream

![Diagram of HEVC encoding process]

- Inter prediction (motion vector search)
- Intra prediction
- Loop filtering
- Locally decoded frames

Example result:

- H.264: 4x4..32x32 blocks
- HEVC: 33 pred. directions

- Intra (within-a-frame) prediction
- Inter (inter-frame) prediction

*4x4 sub-MB available, but rarely used

Motion Vectors(MV)

Coding Tree Unit(CTU)
(Max. 64x64)
HEVC encoding complexity

- About 30x of MPEG-2 processing time, 5x of H.264 processing time
Requirements for 4K/8K broadcasting

- Practical 4K/8K broadcast infrastructure in 2020
- Latest video coding standard (H.265/HEVC) for high compression
- Color signal robustness against tandem encoding
- High bitrate of up to 600 Mbps

NARA: Professional H.265/HEVC encoder LSI toward high-quality 4K/8K broadcast infrastructure
Main concepts for NARA architecture

• Application specific hardware blocks for processes high computational complexity processes, such as precise motion estimation

• Hierarchical pipeline scheme for decisions on optimal hierarchical coding/prediction/transform unit size with high compression

• Single-chip 4K configuration and multi-chip 8K configuration for practical encoding systems
NARA block diagram

VIF: Video Interface
IFE: Image Feature Extraction
MED: Multi-block-size Edge Detector
IPD: Intra Prediction
WME: Wide-range Motion Estimation
MME: Multi-Block-Size Motion Estimation
IME: Integer pixel Motion Estimation
FME: Fractional pixel Motion Estimation
MC: Motion Compensation
IIM: Intra-Inter Mode Decision
MBUS: Memory BUS
TQ: Transform and Quantization
ITIQ: Inverse Transform and Quantization
DF: Deblocking Filter
SAO: Sample Adaptive Offset filtering
BSO: Bit Stream Out
MUX: Multiplexer
PRISC: Prediction Core RISC
CRISC: Coding Core RISC
MRISC: Middle-level RISC
TRISC: Top-level RISC

Copyright©2015 NTT corp. All Rights Reserved.
NARA pipeline polices

- Parallel processing for precise motion estimation achieving better coding efficiency
- Strictly sequential calculation (conforming to HEVC standard) desirable for mode decision to precisely evaluate coding bit costs
- Short pipeline stages for efficient rate control
NARA pipeline scheme

- NARA adopts CTU-based hierarchical pipeline scheme
- Filter mode decisions for coding efficiency while keeping image quality:
 - Wide-range ME (WME) -> Multi-block-size ME (MME) -> Integer ME (IME) -> Fractional ME (FME) -> Inter/Intra Mode Decision (IIM)

Pixel data transfer and filtering

Full-tournament mode decision

Block-size-parallel motion search

Squeeze from 4 to 3 sizes by parallel pre-decision
Parallel pre-decision in MME

- Motion estimation for all block sizes by parallel pre-decision
- Filter into three block sizes by parallel pre-decision

WME
MME
IME
Hpel-FME
Qpel-FME
Bipred-FME
IIM
MC
TQ/ITIQ
DF
SAO
CABAC
Block-size parallel motion search in FME

- Motion estimation for 3 block sizes in block-size parallel motion search

WME
MME
IME
Hpel-FME
Qpel-FME
Bipred-FME
IIM
MC
TQ/ITIQ
DF
SAO
CABAC
Full-tournament mode decision in IIM

- Strictly sequential calculation by full-tournament mode decision
- Strictly sequential calculation (conforming to HEVC standard) desirable for mode decision to precisely evaluate of coding bit costs
NARA configurations

- **Capability**
 - Single-chip processing **up to 4K 60fps 4:2:2**
 - Multi-chip scalability **up to 8K 60fps**
Multi-chip configuration

8k
#0
#1
#2
#3

4k

Horizontal split
(Slice or Tile)

Chip #0

Chip #1

Chip #2

Chip #3

Stream of slice/tile #0

Stream of slice/tile #0+#1

Stream of slice/tile #0+#1+#2

Concatenated Stream Out

Host CPU

Reference Image, DF&SAO Image near Slice/Tile Boundaries

Reference Picture Transfer Region

DF&SAO Transfer Region

Copyright©2015 NTT corp. All Rights Reserved.
Key NARA features and functions

Single-chip configuration:

- Complicated HEVC processing mapped to hierarchical pipeline scheme based on coding tree units (CTUs).
- Hierarchical pipeline achieves wide-range motion estimation with $\pm 3847.75 \times \pm 1926.75$ search range and optimized HEVC’s high-precision prediction mode decision.
- 4k/60p 4:2:2 real-time encoding with ultra-low delay for field pickup units (FPUs), high bitrate of up to 600 Mbps for contribution, multi-channel encoding for cloud systems, and multi-standard encoding for smooth migration.

Multi-chip configuration:

- Ultra-high definition TV encoded beyond 4K with motion estimation and loop filtering across split boundaries when each chip encodes a partitioned frame.
- Suitable for HEVC-based tandem encoding with 4:2:2 for keeping good color information and two-pass encoding for higher compression of final distribution.
NARA chip implementation
Physical features

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>28nm CMOS</td>
</tr>
<tr>
<td>Number of transistors</td>
<td>83M gates</td>
</tr>
<tr>
<td>Clock frequency</td>
<td>Max 600 MHz</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>Core: 0.9 V</td>
</tr>
<tr>
<td></td>
<td>IO: 1.8/3.3 V</td>
</tr>
<tr>
<td></td>
<td>DDR3: 1.5 V</td>
</tr>
<tr>
<td></td>
<td>PCIe and 3G-SDI: 0.9/1.8 V</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Approximately 15.0W</td>
</tr>
<tr>
<td>Package</td>
<td>1152 pin FCBGA (35 x 35mm)</td>
</tr>
<tr>
<td>External memories</td>
<td>DDR3</td>
</tr>
</tbody>
</table>
Functional features

<table>
<thead>
<tr>
<th>Video</th>
<th>Profile</th>
<th>H.265/HEVC Main, Main 10, Main 4:2:2 10 H.264/AVC Baseline, Main, High, High422</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion search range</td>
<td>-3847.75/+3847.75 (H) -1926.75/+1926.75 (V)</td>
<td></td>
</tr>
<tr>
<td>Resolution and video</td>
<td>Single-chip: 4096x2160 at up to 60 frames per second Multi-chip: 7860x4320 at up to 60 frames per second</td>
<td>rate</td>
</tr>
<tr>
<td>Others</td>
<td>Audio: Serial I/F x 2 Port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stream Out: Parallel x 1 /Serial x 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCIe: Gen.2 x 8 Lane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethernet: 1000/100/10 Mbps with MAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Others: User PES input, STC input/output</td>
<td></td>
</tr>
</tbody>
</table>
Target applications (1)

Digital TV Broadcasting Network Service

- Original
- 3 times encoding and decoding
- 420
- 422
- Embedded CODEC
 Portable Microwave link
- Contribution Transmission
- Satellite
- Edge
- HDTV CODEC
- TV Station
- HDTV CODEC
- TV System
- Distribution Transmission
- Original
- 3 times encoding and decoding
- 420
- 422
- Embedded CODEC
 Portable Microwave link
- Contribution Transmission
- Satellite
- Edge
- HDTV CODEC
- TV Station
- HDTV CODEC
- TV System
- Distribution Transmission
Target applications (2)

- Mobile phones
- Consumer TVs
- Broadcast devices (Cameras, editors, encoders)

4K/8K UHDTV Technology

- Mobile/TV Broadcast $192B
- Advertising $68B
- Cinema $20B
- Medical $21B
- Security/Surveillance $7B
- Industrial Design $17B
- Conferencing/Presentation $7B
- Education/Academic $0.6B

Reference: Interim Report of 4K/8K Roadmap Follow-up Meeting (MIC, Japan) *1USD= 120JPY
Conclusion

- Developed: single-chip 4K 60fps 4:2:2 HEVC video encoder LSI, scalable to 8K 60fps
- 8K scalability achieved inter-chip connectivity and parallel processing functions
- NARA architecture has hierarchical pipeline scheme for CTUs

NARA is a key LSI for professional H.265/HEVC encoder LSI toward high-quality 4K/8K broadcast infrastructure