Microarchitectures Undo
Software Security Measures

• To implement secure algorithms, software based cryptography utilizes the ISA through instructions or cryptographic extensions.

• Security measures include masking to hide sensitive data.

• Microarchitecture’s sophisticated efficiency logic can neutralize intended masking.

• Due to unknown microarchitecture implementations, ensuring effective masking reduces to a game of trial and error, guess work and luck.
Example of a Security Measure: Boolean Masking

- Popular form of masking due to its efficiency.

- Secret key and inputs are masked and split into shares.
 \[K_{i0} = K \oplus R_{2i}, \quad K_{i1} = R_{2i} \]
 \[D_{i0} = D_i \oplus R_{2i+1}, \quad D_{i1} = R_{2i+1} \]
 - \(K \) is the secret key, \(D_i \) is the \(i \)th input, and \(R_i \) are uniformly distributed random numbers.
 - \(K_{i0} \) and \(K_{i1} \) are key shares.
 - \(D_{i0} \) and \(D_{i1} \) are input, or state shares.

- Each share, alone, does not represent sensitive information.

- The XOR, or Hamming Distance, of shares does represent sensitive information and must be avoided.
Examples of Microarchitecture Leaks

Intel AES-NI

- Cache reads reveal relationship between inputs and secret keys!
- State transitions going into or output of AES reveal secret keys!

ARM

- Sequential operands through ALU leak Hamming distance.
- Accessed value in register bank leaks Hamming distance with other values in register bank.
- Sequential bus addresses leak Hamming distance.
- Data used in LDRB instruction leak.
- Combinations of seemingly unrelated data and instructions leak.
Call for Collaboration

• Side Channel Analysis is a real problem, even for large and complicated microprocessors.
 ◦ Large and complicated microprocessors make it harder to implement software based countermeasures against DPA.
 • Especially when microarchitecture is not known.

• Software based countermeasures for cryptographic ISA extensions can only reduce, not remove leaks.

• Effective software based masking incurs large efficiency hits due to extra work to avoid implicit unmasking in microarchitecture.

• Suggest possible additions, or modifications to microarchitecture to allow for a DPA based trusted execution environment.

• Looking to the microarchitecture community for advice, suggestions and ideas.