Comparison of Key/Value Store (KVS) in Software and Programmable Hardware

John W. Lockwood, CEO: Algo-Logic Systems, Inc.
Why Share Data by Name (Key) Instead of Address?

- **Key/Value Store (KVS)**
 - Simplifies implementation of large-scale distributed computation algorithms
 - Data Center Servers exchanges data over standard Ethernet

- **Challenges**
 - Operating System delays packets and limits throughput
 - Per-core processing inefficient at high-speed packet processing

- **Solutions**
 - Bypass kernel bypass with DPDK
 - Offload of packet processing with FPGA

Examples:

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
<td>Phone #</td>
</tr>
<tr>
<td>Algo-Logic</td>
<td>(408) 707-3740</td>
</tr>
<tr>
<td>IP Address</td>
<td>Interface : MAC Address</td>
</tr>
<tr>
<td>204.2.34.5</td>
<td>Eth6 : 02:33:29:F2:AB:CC</td>
</tr>
<tr>
<td>Content Hash</td>
<td>Storage Block ID</td>
</tr>
<tr>
<td>XYZ</td>
<td>948830038411</td>
</tr>
<tr>
<td>Order ID</td>
<td>Symbol, Side, Price</td>
</tr>
<tr>
<td>ATY11217911101</td>
<td>AAPL, B, 126.75</td>
</tr>
<tr>
<td>Virtex</td>
<td>Edge List</td>
</tr>
<tr>
<td>v140</td>
<td>v201, v206, v225</td>
</tr>
</tbody>
</table>
Why the Move to Programmable Hardware?

“There are large challenges in scaling the performance of software now. The question is: ‘What’s next?’ We took a bet on programmable hardware.”
- Doug Burger, Microsoft

• **Driving Metrics in the Data Center**

 – Latency:
 - Reduce delay
 - Avoid jitter

 – Throughput
 - Processing packets at line rate
 - Handle 10G, 25G, 40G, and 100G

 – Power:
 - Driving cost of OpEx

• Field Programmable Gate Array (FPGA) logic moves into the CPU
• Microsoft accelerates BING search with FPGA
• Intel acquires Altera
Servers Accelerated with FPGA Gateware

- **FPGA Augments Existing Servers**
 - Can run on an expansion card (same size as a GPU)
 - Or may be integrated into the CPU socket
- **GDN Applications run on FPGA**
 - Implements low-latency, low-power, high-throughput data processing
Implementation of KVS with Socket I/O, DPDK, and FPGA

- Benchmark same application
 - Key/Value Store (KVS)
- Running on the same PC
 - Intel i7-4770k CPU, 82598 NIC, and Altera Stratix V A7 FPGA
- With three different implementations
 - Socket I/O, DPDK, FPGA
Measured Latency, Throughput, and Power Results

All Datapaths Summary

<table>
<thead>
<tr>
<th></th>
<th>Latency (µseconds)</th>
<th>Tested Throughput (CSMs/sec)</th>
<th>Power (µJoules/CSM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sockets</td>
<td>41.54</td>
<td>4.0</td>
<td>11</td>
</tr>
<tr>
<td>DPDK</td>
<td>6.434</td>
<td>16</td>
<td>6.6</td>
</tr>
<tr>
<td>RTL</td>
<td>0.467</td>
<td>15</td>
<td>0.52</td>
</tr>
</tbody>
</table>

GDN vs. Sockets

GDN vs. Sockets 88x less 13x 21x less

GDN vs. DPDK

GDN vs. DPDK 14x less 3.2x 13x less
KVS Latency in FPGA, DPDK, and Sockets

Latency Comparison 100k packets, 1 OCSM per packet, 1k pps

- KVS in FPGA: Best Latency, No Jitter
 - Altera Stratix V RTL Average: 0.467µs
- KVS in DPDK: Lower Latency, Some Jitter
 - DPDK Average: 6.29µs
- Sockets Average: 41.40µs

Tighter Spread = Less Jitter

Lower Latency = Faster Response
Conclusions: Key/Value Store in Programmable Hardware

- **Lowers Latency**
 - 88x faster than Linux networking sockets
 - 14x faster than optimized DPDK (kernel bypass)

- **Increases Throughput (IOPs)**
 - 3x to 13x improvement in throughput
 - Lowers Capital Expenditures (CapEx)

- **Reduces Power**
 - 13x to 21x reduction in power
 - Reduces Operating Expenditures (OpEx)

Gateware Defined Networking® dramatically reduces latency and power and improves throughput in the data center