High Performance DSP for Vision, Imaging and Neural Networks

Greg Efland, Sandip Parikh, Himanshu Sanghavi, Aamir Farooqui
2016 Hot Chips
Flint Center for the Performing Arts, Cupertino, California
August 21-23, 2016
Vision Processors
Emerging Applications

Mobile
HDR
Video Stabilizer
Face Detection

Automotive
Traffic Sign Recognition
Gesture Control

Drone
3D Vision

Security
People Detection

Wearables and IoT
Vision Processors
Opportunity

• Ever increasing demand for vision and image processing
 – Cameras everywhere
 – Dramatic complexity expansion of vision in cars, IoT, mobile, consumer
 – Emergence of compute-hungry neural networks

• Vision Processors are designed for the complex algorithms in computer vision and imaging
 – Programmable architectures for rapidly evolving and diverse applications
 – Memory architectures designed for vision and imaging application needs
 – Power-efficient solutions for vision and imaging applications
Cadence Tensilica Vision Processors

Evolution

• Architecture evolved over 4 generations
 – Member of large family of Cadence DSPs

• Key characteristics
 – Wide SIMD processing: 512-bit width, 64-/32-/16-way processing
 – Local memory based: multiple banks, multiple 512-bit load/store
 – FLIX™ instructions (VLIW): 5 slots, multiple formats, scalar / vector mix

• Delivered as soft IP
 – Customer extensible with new operations and interfaces
 – Customer configured according to requirements
Real Time Vision with Cadence

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive, mobile, surveillance, IOT, CNN</td>
<td>Virtual Platforms, FPGA development systems, at-speed silicon</td>
<td>OpenCV, OpenVx, CNN Framework</td>
<td>One GUI for configuration, compilation, debug, modeling, RTOS</td>
<td>Fastest DSP for vision – classic and CNN</td>
<td>1B cores in imaging/video/vision</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Xtensa™ Foundation, Xtensa™ Processor Generator</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hundreds of customers, thousands of designs, 5 billion cores</td>
<td></td>
</tr>
</tbody>
</table>

© 2016 Cadence Design Systems, Inc. All rights reserved.
Cadence Tensilica Vision Processors
Evolution

• Vision P6
 – Significantly improved performance on a wide range of imaging and vision applications compared to predecessors
 – Performance improvements achieved through incremental increases in area and power while maintaining efficiency and software compatibility

• Key areas of improvement
 – Data type diversity
 – Enhanced memory parallelism and data movement
 – CNN enhancements
Tensilica Vision P6 DSP

- Enhanced Memory Parallelism
 - SuperGather™

- Enhanced Data Movement
 - Aligning vector load/store
 - Integrated 2-D DMA

- CNN Enhancements
 - 256 MACs

- Diverse Data Type Support
 - 8/-16/-32-bit fixed-point
 - Single-/half-precision FP
Cadence Tensilica Vision Processors
Evolution

• Vision P6 status
 – Sampled to early engagement customers
 – General release October 2016
Data Type Diversity
Data Type Diversity

- Data type requirements vary by application
 - A wide range of supported data types enables a wide range of applications
 - Configurable data type support enables efficient targeted solutions

- Vision P6 adds vector floating-point support
 - Leverages existing resources – vector register files and load/store operations
 - Incremental cost – floating-point data paths
 - Optional – no cost for applications that don’t require floating-point

- Vision P6 computation data types
 - Fixed-point: 8-/16-/32-bit
 - Floating-point: single-/half-precision
Data Type Diversity
Fixed-Point Data Types

• Fixed-point
 – Primary data type for many applications
 – 8-bit, 16-bit most common computation types
 – 8-bit increasingly important – e.g. CNN network inference
 – 32-bit for precision – e.g. perspective warp mapping functions
 – Multiple 8x8/8x16/16x16 MACs per SIMD way

<table>
<thead>
<tr>
<th>Data Type</th>
<th>SIMD</th>
<th>MACs per Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-bit fixed-point</td>
<td>64-way</td>
<td>256 (8x8) / 128 (8x16)</td>
</tr>
<tr>
<td>16-bit fixed-point</td>
<td>32-way</td>
<td>64 (16x16)</td>
</tr>
<tr>
<td>32-bit fixed-point</td>
<td>16-way</td>
<td>16 (16x32) / 8 (32x32)</td>
</tr>
</tbody>
</table>
Data Type Diversity
Floating-Point Data Types

• Floating-point
 – For dynamic range – e.g. RANSAC
 – Ease porting of applications from other platforms
 – Support both scalar and N-way vector processing
 – Single-precision and half-precision independently configurable

<table>
<thead>
<tr>
<th>Data Type</th>
<th>SIMD</th>
<th>MADDs per Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit single precision</td>
<td>16-way</td>
<td>16</td>
</tr>
<tr>
<td>16-bit half precision</td>
<td>32-way</td>
<td>32</td>
</tr>
</tbody>
</table>
Enhanced Memory Parallelism and Data Movement
Gather-Scatter
Opportunity

• A number of kernels access data in disparate memory locations

 – Not simple fixed-stride accesses: data in arbitrary rows and/or columns
 – Hard to efficiently vectorize using wide loads/stores since arbitrary movement of data across vector registers, particularly across rows, can be expensive
 – If data is sparse, wide loads/stores also waste memory bandwidth and energy
Gather-Scatter

Opportunity

- **Vision P6** supports multiple banks per local data RAM
 - Up to 4 banks: multiple load/store operations and DMA transfers per cycle
 - Banks are 512 bits wide, interleaved on low-order address bits
 - Typically implemented using multiple narrow memories: up to 32 sub-banks

- Enable software to exploit independently addressable sub-banks
 - Incremental hardware increase leverages existing memory structure
 - Significant performance increase for a number of applications
SuperGather
Hardware Operations

• Gathers: vector of addr \rightarrow vector register
 – Non-blocking operations – stall on data use
 – Up to 4 outstanding gather operations in flight

• Scatters: vector register \rightarrow vector of addrs
 – Posted operations
 – Up to 2 outstanding scatter operations in flight

• Up to 32 8/16-bit elements, 16 32-bit elements read / written per cycle
 – Reads and writes to different sub-banks performed in parallel
 – Multiple reads or writes to same sub-bank address combined into single access
 – Reads overlapped across different gathers; writes overlapped across different scatters
Gather-Scatter Programming Model

• Gather and scatter operations are invoked via C intrinsics
 – C compiler schedules all operations including gather and scatter
 – Loop unrolling, software pipelining handles gather and scatter
 – C type qualifier ‘restrict’ supported for gather and scatter base pointers

• Example: update N independent histograms in parallel (HoG)
 – Placement of each histogram in a single sub-bank bounds conflicts

```
LOOP for vBins, vWeights in vInput:
    vOffsets = vBins * pitch + vBase
    vCounts = GATHER(base, vOffsets)
    SCATTER(vCounts + vWeights, base, vOffsets)
```
Gather-Scatter Performance

- Overall benchmark speedup relative to no gather-scatter
 – 2X to 10X over various kernels

- Gather cycle count reduction due to overlap
 – 0.5X to 1X image warp cases
Vector Load/Store, Shuffle Operations and DMA

• Efficient data reorganization to support computation
 – Aligning load/store operations access vectors of arbitrary length and/or alignment in memory
 – Shuffle operations perform arbitrary shuffles/routing of vector register data across SIMD lanes

• Integrated DMA
 – 1-D and 2-D transfers between local data RAM and external memory or within local data RAM
 – Arbitrary alignment of source, destination
 – Independent source and destination pitch
 – Up to 64 outstanding external memory requests to deal with large system memory latencies
Enhanced Memory Parallelism and Data Movement

Summary

• Memory parallelism and flexible data movement key to high performance across a wide range of application kernels
• Gather-scatter provides significant performance increase for modest incremental hardware increase by exploiting existing memory structure
• Memory bandwidth balanced with compute requirements

<table>
<thead>
<tr>
<th>Type</th>
<th>Peak Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aligned / Unaligned Loads</td>
<td>2 x 64 bytes/cycle</td>
</tr>
<tr>
<td>Aligned / Unaligned Stores</td>
<td>1 x 64 bytes/cycle</td>
</tr>
<tr>
<td>Gathers</td>
<td>64 bytes/cycle</td>
</tr>
<tr>
<td>Scatters</td>
<td>64 bytes/cycle</td>
</tr>
<tr>
<td>DMA</td>
<td>64 bytes/cycle</td>
</tr>
</tbody>
</table>
CNN Enhancements
Neural Network Applications

- Neural networks need lots of compute – especially multiply-add
- Two key compute engine metrics:
 - Scaling to high total compute
 - High multiply-add per watt
- Vision DSPs target emerging deployment opportunities
 - High total compute at good efficiency
 - Flexibility and programmability for related processing (e.g. ROI extraction) and evolving network structures
3D-Filter Interpretation of CNN Layer

Convolutional Layer

\[y_i = \sum_{j=1}^{D} F_{ij} \circ x_j \]

One 3D Filter per Layer “i” Output

Each filter has \(L = H \cdot W \cdot D \) coefficients

There are \(N \) such filters
CNN Enhancements

Opportunity

- 3-D convolution: significant data reuse possible
 - Load bandwidth supports > 1 MAC per element
- Fixed-point types appropriate for computation
 - Moving to 8-bit types for inference
- Additional MACs enable significantly improved CNN kernel performance
 - Incremental hardware increase for additional MACs
 - 2X – 4X peak MAC performance of Vision P5
CNN Enhancements

Operations

- Paired 16x16, 8x16 and 8x8 MAC operations

 Scalar x vector: \(\text{acc}[i] += c_0 \times v_0[i] + c_1 \times v_1[i]\)

 Vector x vector: \(\text{acc}[i] += v_0[i] \times v_1[i] + v_2[i] \times v_3[i]\)

- Quad 8x8 MAC operations

 Scalar x vector: \(\text{acc}[i] += c_0 \times v_0[i] + c_1 \times v_1[i] + c_2 \times v_2[i] + c_3 \times v_3[i]\)

- Variants support vectorizing in different dimensions
 - Different networks and layers within a given network often need different approaches for best performance
CNN Performance

• 3-D convolution kernel
 – Input: 14x14x64 (8-bit); conv: 5x5x64, stride 1; output: 10x10x64 (8-bit)

<table>
<thead>
<tr>
<th></th>
<th>Multiplier Utilization</th>
<th>Relative Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision P5</td>
<td>95%</td>
<td>1.0</td>
</tr>
<tr>
<td>Vision P6</td>
<td>80%</td>
<td>3.3</td>
</tr>
</tbody>
</table>

• Alexnet layer 1 convolution
 – Input: 227x227x3 (8-bit); conv: 11x11x3, stride 4; output: 55x55x96 (8-bit)

<table>
<thead>
<tr>
<th></th>
<th>Multiplier Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision P6</td>
<td>57%</td>
</tr>
</tbody>
</table>
Vision P6 Demo
Traffic Sign Recognition: CNN

Tensilica® Vision DSP Running Convolutional Neural Network (CNN) Prediction Algorithm
Compare the input signs with 43 trained signs
People Detection and Face Detection

People detection: An example of computer vision histogram of oriented gradient algorithm

- 64x128 detection window, 1.2 scale factor, L1 Histogram normalization
- **Market**: Automotive, drone, and robot
 Applications: Collision avoidance, object detection, passenger detection
- **Market**: Surveillance
 Applications: People counting, people detection/tracking

Face detection: An example of computer vision OpenCV, Haar cascade algorithm

- Full Detection every frame
- 22 levels
- **Market**: Mobile, automotive, wearable, tablets
 Applications: Selective auto exposure, white balance, focus, face tracking, face authentication