A “ZERO DISPLACEMENT” ACTIVE ULTRASONIC FORCE SENSOR FOR MOBILE APPLICATIONS
HOTCHIPS 2016
23 AUGUST 2016
Ask an RF Engineer to Build a Touch Sensor….

- Use scattering/absorption of a propagating wave to detect position = radar/sonar
- Measure scattering/absorption of a propagating wave = channel equalization/training
- Need sub-mm accuracy = millimeter wave
- Millimeter wave = 60-100 GHz frequencies

Eliminate the 100GHz requirement by eliminating the speed of light – can we use ultrasound?
Ultrasonic Propagation in Plate Solids

- A0 vs. S0 (lowest order propagation modes)

\[\text{A0 – entire plate flexes} \quad \text{S0 – longitudinal} \]

- Unlike radio waves, A0 and S0 propagate at very different group/phase velocities!
- Higher order modes exist and will propagate as well
- Modes can transition at boundaries/discontinuities
- Snell’s law is not generally applicable!
Piezoelectric Ceramics

- Equivalent of an antenna for sound waves
 - Passive and reciprocal - converts electric field into mechanical excitation and vice-versa
 - Electrically like a parallel-plate capacitor
 - Exceedingly common/cheap
 - Quartz crystals/crystal oscillators
 - Hard drive precision head actuators
 - Fish finders/buzzer speakers/toothbrushes/etc.

- Strain/voltage relationship
 \[\varepsilon_i \text{ (strain in } i\text{th axis}) = \left(\frac{DX_i}{X_i} \right) = d_{ij} \cdot \frac{V}{t}, \]
 where field is applied on } j \text{ axis}
Sentons’ Sensor Technology

- Uses inexpensive piezoelectrics as ultrasonic transmitters/receivers (acoustic antennas)
- All sensor components sealed behind glass, no lamination in visible area
- Ultrasound vibration field is continuously and uniformly propagated across the substrate (glass or metal)
- Carrier frequency ~ 500 kHz
- Can sense on metal, glass, and curved surfaces – any substrate that supports ultrasonic propagation

Industry’s First New Sensor Technology…In A Very Long Time!
Visualized Response to Touch

- Actual measured glass response using laser vibrometer
- Amplitude of glass deformation \(\sim 20\text{nm} \)
Visualized Response to Touch

- Actual measured glass response using laser vibrometer
- Amplitude of glass deformation ~ 20nm
Touch and Force Detection

- Pulses in received waveforms correspond to touches
 - Which pulse goes with which finger?
 - Edge reflection can result in multiple pulses from a single finger
 - In general, *Time of flight* gives positional information
 - *Amplitude* of pulse response corresponds linearly to force – coupling between touch object and traveling wave
- Can *simultaneously* determine all 3 variables – X, Y, and force
Compared to Existing Sensors?

Projected Capacitive Touch Sensor (no force)

Sentons Ultrasound-Based Touch Sensor (includes force)
Two Specific Technology Use Cases

- **Cover Glass Force Sensing**
- **Touch/Force Enabling the *Rest* of the Phone**
Cover Glass Force Sensing (3D Touch)

Iphone 6s – expensive cap sensor array (strain gauge) mounted behind LCD/backlight; measures deformation of glass/LCD due to pressure
Zero-Displacement Force Sensor

- Huge advantage over capacitive-based sensors – does not require *deflection* of glass/LCD to sense
 - Capacitive strain gauges are a major manufacturing headache due to tolerancing and calibration
 - Capacitive strain gauges require thicker glass and additional layer in vertical structure (Z-impact)

- Ultrasound wave “moves” the glass – force/pressure is measured by coupling between touch object and wave

- Can also detect force on highly rigid/curved glass surfaces, due to zero deflection requirement
Measured Force Heatmap

- Heat map of front force sensor on actual smartphone
- 0.5kg fixed load applied at points on face of phone
- Heat map is raw sensor report (in kg)
- Nonuniformity mostly due to structure of phone and is repeatable
- Can be calibrated/normalized out given touch location
Linearity of Force Sensing

- Load cell applied at center of phone screen
- Each reported line is with a different size tip on load cell (D=diameter)
- 4X change in contact area – not pseudoforce!
Sensor Integration

- Sensor consists of two strips of piezoelectric transducers attached outside of the active LCD area to cover glass
- Piezoelectric arrays are preattached to FPC as a module
- Bar/array of piezos is needed for uniformity of pressure response across glass
Two Specific ZDF Use Cases

- Cover Glass Force Sensing
- Touch/Force Enabling the *Rest* of the Phone
Touchbar (Sensing on Metal Case)

• Two sensor bars, one on each side of phone housing
 • Same FPC/piezo sensor array as for cover glass
 • Can sense up to 5+ fingers per bar, per-finger pressure
 • Replace buttons/switches on edge of phone
 • Can sense which hand is holding the phone
ASIC Architecture

- DSP/μProc licensed from third party
- Fixed-signal processing front-end in custom logic
 - Lower power/area
 - Relieves DSP MIPS reqts
- All analog done in-house
 - Calibrated SAR ADC’s
 - Overall RX dynamic range > 60 dB
 - TX 5V capable in standard 65nm CMOS process
Parametrics and Die

<table>
<thead>
<tr>
<th>ASIC Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die size</td>
<td>19.4 mm²</td>
</tr>
<tr>
<td>Technology node</td>
<td>65nm</td>
</tr>
<tr>
<td>Package size</td>
<td>5mm x 5mm fcCSP</td>
</tr>
<tr>
<td>Max DSP clock</td>
<td>200 MHz</td>
</tr>
<tr>
<td>Supply Voltages</td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>1.2V</td>
</tr>
<tr>
<td>I/O</td>
<td>1.8V</td>
</tr>
<tr>
<td>Piezo Driver</td>
<td>2.8V</td>
</tr>
<tr>
<td>Power Consumption</td>
<td></td>
</tr>
<tr>
<td>Scan-to-wake</td>
<td>0.9 mW @ 5Hz report</td>
</tr>
<tr>
<td>Max scan rate</td>
<td>14 mW @ 100Hz report</td>
</tr>
</tbody>
</table>
Conclusion

Active ultrasonic sensing allows for simultaneous touch/force sensing on a wide variety of surfaces
- Can sense force *without* requiring surface deflection
- Allows for new device industrial design, as well as user interaction on traditionally inactive surfaces

Can Touch Enable Everything!