Graph Streaming Processor

A Next-Generation Computing Architecture

Val G. Cook – Chief Software Architect
Satyaki Koneru – Chief Technology Officer
Ke Yin – Chief Scientist
Dinakar Munagala – Chief Executive Officer
Introduction

• THINCI, Inc. “think-eye” is 5-year-old strategic/venture-backed technology startup

• Develop silicon for machine learning, computer vision and other strategic parallel workloads

• Provide innovative software along with a comprehensive SDK

• 69-person team (95% engineering & operations)

• Key IP (patents, trade secrets)
 – Streaming Graph Processor
 – Graph Computing Compiler

• Product Status
 – Early Access Program started Q1 2017
 – First edition PCIe-based development boards will ship Q4 2017
Architectural Objective

Exceptional efficiency via balanced application of multiple parallel execution mechanisms

Levels of Parallelism
- Task Level Parallelism
- Thread Level Parallelism
- Data Level Parallelism
- Instruction Level Parallelism

Key Architectural Choices
- Direct Graph Processing
- Fine-Grained Thread Scheduling
- 2D Block Processing
- Parallel Reduction Instructions
- Hardware Instruction Scheduling
Task Level Parallelism

Direct Graph Processing
Task Graphs

- **Formalized Task Level Parallelism**
 - Graphs define only computational semantics
 - Nodes reference kernels
 - Kernels are programs
 - Nodes bind to buffers
 - Buffers contain structured data
 - Data dependencies explicit

- **ThinCI Hardware Processes Graphs Natively**
 - A graph is an execution primitive
 - A program is a proper sub-set of graph
Graph Based Frameworks

- **Graph Processing or Data Flow Graphs**
 - They are a very old concept, for example Alan Turing’s “Graph Turing Machine”.
 - Gaining value as a computation model, particularly in the field of machine learning.

- **Graph-based machine learning frameworks have proliferated in recent years.**
Streaming vs. Sequential Processing

• Sequential Node Processing
 – Commonly used by DSPs and GPUs
 – Intermediate buffers are written back and forth to memory
 – Intermediate buffers are generally non-cacheable globally
 – DRAM accesses are costly
 • Excessive power
 • Excessive latency

• Graph Streaming Processor
 – Intermediate buffers are small (~1% of the original size)
 – Data is more easily cached
 – Benefits of significantly reduced memory bandwidth
 • Lower power consumption
 • Higher performance
Thread Level Parallelism
Fine-Grained Thread Scheduling
Fine-Grained Thread Scheduling

- **Thread Scheduler**
 - Aware of data dependencies
 - Dispatches threads when:
 - Resources available
 - Dependencies satisfied
 - Maintains ordered behavior as needed
 - Prevents dead-lock
- **Supports Complex Scenarios**
 - Aggregates Threads
 - Fractures Threads
Graph Execution Trace

- Threads can execute from all nodes of the graph simultaneously
- True hardware managed streaming behavior
Data Level Parallelism

2D Block Processing
Parallel Reduction Instructions
2D Block Processing/Reduction Instructions

- Persistent data structures are accessed in blocks
- Arbitrary alignment support
- Provides for “in-place compute”
- Parallel reduction instructions support efficient processing
 - Reduced power
 - Greater throughput
 - Reduced bandwidth
- Experience better scaling across data types vs. the 2x scaling of traditional vector pipelines
Instruction Level Parallelism

Hardware Instruction Scheduling
Hardware Instruction Scheduling

- Scheduling Groups of Four Processors
 - Hardware Instruction Picker
 - Selects from 100’s of threads
 - Targets 10’s of independent pipelines
Programming Model
Programming Model

• Fully Programmable
 – No a-priori constraints regarding data types, precision or graph topologies
 – Fully pipelined concurrent graph execution
 – Comprehensive SDK with support for all abstraction levels, assembly to frameworks

• Machine Learning Frameworks
 – TensorFlow
 – Caffe
 – Torch

• OpenVX + OpenCL C/C++ Language Kernels (Seeking Khronos conformance post Si)
 – Provides rich graph creation and execution semantics
 – Extended with fully accelerated custom kernel support
Results

• Arithmetic Pipeline Utilization
 – 95% for CNN’s (VGG16, 8-bit)

• Physical Characteristics
 – TSMC 28nm HPC+
 – Standalone SoC Mode
 – PCIe Accelerator Mode
 – SoC Power Estimate: 2.5W