The IBM z14 microprocessor chip set

Dr. Christian Jacobi
Distinguished Engineer
Chief Architect, IBM Z processor development
IBM Poughkeepsie, NY
Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured Sync new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM’s future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.
The mainframe is everywhere, making the world work better

Mainframes process

30 billion business transactions per day

Mainframes enable

$6 trillion in card payments annually

80 percent of the world’s corporate data resides or originates on mainframes

91 percent of CIOs said new customer-facing apps are accessing the mainframe
IBM Z – Processor Roadmap

Leadership Single Thread, Enhanced Throughput
Improved out-of-order Transactional Memory
Dynamic Optimization
2 GB page support
Step Function in System Capacity

Leadership System Capacity and Performance
Modularity & Scalability
Dynamic SMT
Supports two instruction threads
SIMD
PCIe attached accelerators
Business Analytics Optimized
Virtual Flash Memory

Pervasive encryption
Low latency I/O for acceleration of transaction processing for DB2 on z/OS
Pause-less garbage collection for enterprise scale JAVA applications
New SIMD instructions
Optimized pipeline and enhanced SMT

Workload Consolidation and Integration Engine for CPU Intensive Workloads
Decimal FP
Infiniband
64-CP Image
Large Pages
Shared Memory

65 nm
z10
2/2008

45 nm
z196
9/2010

32 nm
zEC12
3/2015

22 nm
z13
9/2015

14 nm
z14
9/2017

22 nm
32 nm
45 nm
65 nm
z10
z196
zEC12
z13
z14
z14 Processor Chipset & Drawer Design

CP SCM

6x CP SCMs

1x SC SCM (Air Cooled)

6x CP SCMs under the cold-plates

Capped SC

SC Chip
z14 On-Drawer and System Topology

CP chip, 696 sqmm, 14nm, 17 layers of metal
- 10 cores, each 2+4MB I+D L2 cache
- Shared 128MB L3 cache

SC chip, 696 sqmm, 14nm, 17 layers of metal
- System interconnect & coherency logic
- Shared 672MB L4 cache

Max System:
- 24 CP sockets in SMP interconnect
- 32TB RAIM-protected memory
- 40 PCI gen3x16 fanouts to IO-drawers
- 320 IO cards
z14 processor design summary

Micro-Architecture
- 10 cores per CP-chip
- 5.2GHz
- Cache Improvements:
 - 128KB I$ + 128KB D$
 - 2x larger L2 D$ (4MB)
 - 2x larger L3 Cache
 - symbol ECC
- New translation & TLB design
 - Logical-tagged L1 directory
 - Pipelined 2nd level TLB
 - Multiple translation engines
- Pipeline Optimizations
 - Improved instruction delivery
 - Faster branch wakeup
 - Improved store hazard avoidance
 - 2x double-precision FPU bandwidth
 - Optimized 2nd generation SMT2
- Better Branch Prediction
 - 33% Larger BTB1 & BTB2
 - New Perceptron & Simple Call/Return Predictor

Architecture
- PauseLess Garbage Collection
- Vector Single & Quad precision
- Long-multiply support (RSA, ECC)
- Register-to-register BCD arithmetic

Accelerators
- Redesigned in-core crypto-accelerator
 - Improved performance
 - New functions (GCM, TRNG, SHA3)
- Optimized in-core compression accelerator
 - Improved start/stop latency
 - Huffman encoding for better compression ratio
 - Order-preserving compression
z14 Pipeline

Deep high frequency pipeline
- Async branch prediction ahead of ifetch
- 32B/cycle ifetch
- 6 instruction / cycle parse & decode
- CISC instruction cracking
- Unified OOO issue queue
- 2 LSU, 4-cycle load-use
- 4 FXU, 2 SIMD/FP/BCD
- In-order completion & checkpoint
Traditional L1 cache directory

- Traditional cache design employs logical-indexed, absolute tagged directory
 - Use of partial compare set-predict array reduces latency of data return from L1 cache
 - TLB access and L1 directory access / compare happen in parallel with L1 cache read
 - Absolute-address based miscompare drives setp-correction and re-drive of the instruction

- Highly associative TLB and directory structures are area and power inefficient
 - Limited TLB1 size, in turn limits performance gain from growing L2 and L3 caches
 - Number of cache ports is limited
L1 logical tagged directory

- I$ and D$ now use logically tagged directory
- Effectively combining TLB1 and cache directory into single structure
 - Directory entry is wider (address space ID + virtual address, versus absolute address only)
 - Set-predict is used to read a single directory entry for each Load/Store micro-op
 - 8-way directory is implemented as a single, 8x deep directory; set-predict output is used as row-addressed
 - Directory now part of local & global TLB purge operations (e.g. during OS paging)
- Significant area & power reduction for L1 hit
Integrated TLB2 & L2 cache pipeline

- Fixed-duration pipeline for TLB2 and L2 cache invoked on L1-setp miss
- L2 and TLB2 can scale to be very large
 - Power & area efficient because of single-ported design and only accessed on L1 miss
 - 2MB L2I and 4MB L2D on z14, 6k entries TLB2 for 4KB pages
 - 8 cycle L2-hit latency (1.5ns)
- L1 pointer directory keeps track of cache lines in L1 even when logdir invalidated
 - Used for reload of translation without reloading data into L1, as well as logical address synonyms
Crypto Accelerator

- IBM Z pervasive encryption reduces risk and auditing effort & cost
 - Pervasively encrypt data in flight and at rest with no application changes and no impact to SLAs
 - System-wide design optimized through silicon, firmware, OS, and middleware stack

- Redesigned crypto engines for 4-7x bandwidth vs z13
 - Pipeline and parallelize AES & Hash operations (GCM)
 - Execute 2 AES rounds in 3 cycles
 - Overlap multiple rounds where possible (ie. Non-CBC encryption)
 - Push limits of cycle time (lowVt)

- Faster engines required redesign of interfaces to/from cache
 - New firmware instruction to copy up to 256B from D$ to Co-processor
 - Branch-avoidance to not slow down data delivery
 - Optimized prefetching for source & destination to not starve engine

- 13.2GB/sec per core in OpenSSL AES-256-XTS speed test with 4KB blocks
Galois Counter Mode (GCM)

- **AES-GCM** is frequently used mode to encrypt and authenticate messages
- **z14** adds new instructions to directly implement AES-GCM algorithm
- Implemented as orchestration of AES and GHASH engines
- 12.5GB/sec AES-GCM-256 per core with 4KB blocks
Key protection

• Cryptographic encryption relies on the protection of the key

• Most processors support crypto accelerating instructions with the keys in user memory
 – When encrypting message from web browser to your bank a call to OpenSSL takes a clear text message and clear key to encrypt
 – Know as clear key cryptography in IBM Z
 – OS-admin, memory dump, core dump etc all pose risk of exposing key to adversaries

• CryptoExpress6S is a tamper-responding PCI crypto accelerator

• Holds a master key in physically protected memory on the card

• Protected Key cryptography wraps user-keys with master key
 – CPU crypto accelerator can interact with CryptoExpress to temporarily decrypt key to perform AES operation
 – Clear Key never exists in application or OS accessible memory

• Secure Key is another mode: all crypto operations directly performed on the card itself
 – Most secure environment but performance limited by PCI latency and bandwidth
Data Compression Accelerator

• IBM Z provides special instruction for dictionary-based data compression
 – Tailored towards short data (e.g. database rows) but employed broadly also for file & tape compression
 – Reduced storage cost, and improved performance (disk bandwidth, DB2 buffer pool efficiency, etc)
 – Implemented as firmware and co-processor specialized hardware

• z14 performance improvements in both start-up latency, and peak throughput
 – Optimized data load & store (same as crypto engine)
 – Optimized compression status return to firmware
 – Parallel search of dictionary for multiple symbols

• New architectural features to further improve data compression efficiency
 – Huffman Coding
 – Order Preserving Compression
Order-Preserving Compression

• Compression algorithm that ensures data can be compared <, =, >
 – Reduces compression efficiency slightly vs standard dictionary compression
 – Encodes symbols in a way that compressed data maintains ordering relation
 \[A < B \iff \text{compressed } A < \text{compressed } B \]

• Searching for key K is replaced with searching for compressed K
• Entries in DB2 index are stored in the new compressed format
 – Reduced disk space
 – Improved Buffer Pool efficiency
 – Improved Cache efficiency for Index searches

• Same technology for Sort Workfiles and other places where searchable data is stored
IBM Z

IBM z14 – designed for massive scale commercial workloads

• Processor Chip w/ L3 cache + System Control Chip w/ L4 cache
• 14nm SOI technology, 5.2GHz in water cooled enterprise server
 – CP: 6.1B transistors, 14 miles of wire
 – SC: 9.7B transistors, 13.5 miles of wire
• Up to 240 physical cores in 4-drawer shared-memory SMP
• 170 configurable customer CPUs, plus IO assist and firmware CPUs
• +35% capacity, +10% single thread / +25% SMT2 performance
• Micro-architectural and architectural enhancements for wide variety of workloads
 – BCD for Cobol, Garbage Collection for Java, Compression for Databases, …
THANK YOU

Dr. Christian Jacobi
cjacobi@us.ibm.com
BACKUP
Glossary and Links

- CP – Central Processor Chip
- SC – System Control Chip
- SCM – Single Chip Module
- RAIM – Redundant Array of Independent Memory
- MC – memory controller
- LSU – Load Store Unit
- FXU – Fixed Point Unit
- Setp – Set Predictor (for associative caches)
- Logdir – logically tagged and indexed directory
- Crypto Express
- Details on Protected Key crypto:
 https://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100647