THE NEXT GENERATION AMD ENTERPRISE SERVER PRODUCT ARCHITECTURE

KEVIN LEPAK, GERRY TALBOT, SEAN WHITE, NOAH BECK, SAM NAFFZIGER
PRESENTED BY: KEVIN LEPAK | SENIOR FELLOW, ENTERPRISE SERVER ARCHITECTURE
CAUTIONARY STATEMENT

This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD) including, but not limited to, the timing, features, functionality, availability, expectations, performance, and benefits of AMD's EPYC™ products, which are made pursuant to the Safe Harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such as "would," "may," "expects," "believes," "plans," "intends," "projects" and other terms with similar meaning. Investors are cautioned that the forward-looking statements in this presentation are based on current beliefs, assumptions and expectations, speak only as of the date of this presentation and involve risks and uncertainties that could cause actual results to differ materially from current expectations. Such statements are subject to certain known and unknown risks and uncertainties, many of which are difficult to predict and generally beyond AMD's control, that could cause actual results and other future events to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Investors are urged to review in detail the risks and uncertainties in AMD's Securities and Exchange Commission filings, including but not limited to AMD's Quarterly Report on Form 10-Q for the quarter ended April 1, 2017.
Key Tenets of EPYC™ Processor Design

<table>
<thead>
<tr>
<th>Category</th>
<th>Tenets</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Performance</td>
<td>“Zen” — high performance x86 core with Server features</td>
</tr>
<tr>
<td>Virtualization, RAS, and Security</td>
<td>ISA, Scale-out microarchitecture, RAS</td>
</tr>
<tr>
<td></td>
<td>Memory Encryption, no application mods: security you can use</td>
</tr>
<tr>
<td>Per-socket Capability</td>
<td>Maximize customer value of platform investment</td>
</tr>
<tr>
<td></td>
<td>MCM – allows silicon area > reticle area; enables feature set</td>
</tr>
<tr>
<td></td>
<td>MCM – full product stack w/single design, smaller die, better yield</td>
</tr>
<tr>
<td>Fabric Interconnect</td>
<td>Cache coherent, high bandwidth, low latency</td>
</tr>
<tr>
<td></td>
<td>Balanced bandwidth within socket, socket-to-socket</td>
</tr>
<tr>
<td>Memory</td>
<td>High memory bandwidth for throughput</td>
</tr>
<tr>
<td></td>
<td>16 DIMM slots/socket for capacity</td>
</tr>
<tr>
<td>I/O</td>
<td>Disruptive 1 Processor (1P), 2P, Accelerator + Storage capability</td>
</tr>
<tr>
<td></td>
<td>Integrated Server Controller Hub (SCH)</td>
</tr>
<tr>
<td>Power</td>
<td>Performance or Power Determinism, Configurable TDP</td>
</tr>
<tr>
<td></td>
<td>Precision Boost, throughput workload power management</td>
</tr>
</tbody>
</table>
Key Tenets of EPYC™ Processor Design

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Performance</td>
<td>“Zen”—high performance x86 core with Server features</td>
</tr>
<tr>
<td>Virtualization, RAS, and Security</td>
<td>ISA, Scale-out microarchitecture, RAS</td>
</tr>
<tr>
<td></td>
<td>Memory Encryption, no application mods: security you can use</td>
</tr>
<tr>
<td>Per-socket Capability</td>
<td>Maximize customer value of platform investment</td>
</tr>
<tr>
<td></td>
<td>MCM – allows silicon area > reticle area; enables feature set</td>
</tr>
<tr>
<td></td>
<td>MCM – full product stack w/single design, smaller die, better yield</td>
</tr>
<tr>
<td>Fabric Interconnect</td>
<td>Cache coherent, high bandwidth, low latency</td>
</tr>
<tr>
<td></td>
<td>Balanced bandwidth within socket, socket-to-socket</td>
</tr>
<tr>
<td>Memory</td>
<td>High memory bandwidth for throughput</td>
</tr>
<tr>
<td></td>
<td>16 DIMM slots/socket for capacity</td>
</tr>
<tr>
<td>I/O</td>
<td>Disruptive 1 Processor (1P), 2P, Accelerator + Storage capability</td>
</tr>
<tr>
<td></td>
<td>Integrated Server Controller Hub (SCH)</td>
</tr>
<tr>
<td>Power</td>
<td>Performance or Power Determinism, Configurable TDP</td>
</tr>
<tr>
<td></td>
<td>Precision Boost, throughput workload power management</td>
</tr>
</tbody>
</table>
“ZEN”

Designed from the ground up for optimal balance of performance and power for the datacenter

ZEN DELIVERS GREATER THAN (vs Prior AMD processors) 52% IPC

- Totally New High-performance Core Design
- New High-Bandwidth, Low Latency Cache System
- Simultaneous Multithreading (SMT) for High Throughput
- Energy-efficient FinFET Design for Enterprise-class Products

Microarchitecture Overview in Hot Chips 2016
VIRTUALIZATION ISA AND MICROARCHITECTURE ENHANCEMENTS

<table>
<thead>
<tr>
<th>ISA FEATURE</th>
<th>NOTES</th>
<th>“Bulldozer”</th>
<th>“Zen”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Poisoning</td>
<td>Better handling of memory errors</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>AVIC</td>
<td>Advanced Virtual Interrupt Controller</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Nested Virtualization</td>
<td>Nested VMLOAD, VMSAVE, STGI, CLGI</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Secure Memory Encryption (SME)</td>
<td>Encrypted memory support</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Secure Encrypted Virtualization (SEV)</td>
<td>Encrypted guest support</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>PTE Coalescing</td>
<td>Combines 4K page tables into 32K page size</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Microarchitecture Features

- **Reduction in World Switch latency**
- **Dual Translation Table engines for TLBs**
- **Tightly coupled L2/L3 cache for scale-out**
 - Private L2: 12 cycles
 - Shared L3: 35 cycles
- **Cache + Memory topology reporting for Hypervisor/OS scheduling**

“Zen” Core built for the Data Center
HARDWARE MEMORY ENCRYPTION
SECURE MEMORY ENCRYPTION (SME)

- Protects against physical memory attacks
- Single key is used for encryption of system memory
 - Can be used on systems with Virtual Machines (VMs) or Containers
- OS/Hypervisor chooses pages to encrypt via page tables or enabled transparently
- Support for hardware devices (network, storage, graphics cards) to access encrypted pages seamlessly through DMA
- No application modifications required

Defense Against Unauthorized Access to Memory
HARDWARE MEMORY ENCRYPTION
SECURE ENCRYPTED VIRTUALIZATION (SEV)

- Protects VMs/Containers from each other, administrator tampering, and untrusted Hypervisor
- One key for Hypervisor and one key per VM, groups of VMs, or VM/Sandbox with multiple containers
- Cryptographically isolates the hypervisor from the guest VMs
- Integrates with existing AMD-V technology
- System can also run unsecure VMs
- No application modifications required
BUILT FOR SERVER: RAS (RELIABILITY, AVAILABILITY, SERVICEABILITY)

- **Caches**
 - L1 data cache SEC-DED ECC
 - L2+L3 caches with DEC-TED ECC

- **DRAM**
 - DRAM ECC with x4 DRAM device failure correction
 - DRAM Address/Command parity, write CRC—with replay
 - Patrol and demand scrubbing
 - DDR4 post package repair

- **Data Poisoning and Machine Check Recovery**

- **Platform First Error Handling**

- **Infinity Fabric link packet CRC with retry**

Enterprise RAS Feature Set

- **Caches**
 - L1 data cache SEC-DED ECC
 - L2+L3 caches with DEC-TED ECC

- **DRAM**
 - DRAM ECC with x4 DRAM device failure correction
 - DRAM Address/Command parity, write CRC—with replay
 - Patrol and demand scrubbing
 - DDR4 post package repair

- **Data Poisoning and Machine Check Recovery**

- **Platform First Error Handling**

- **Infinity Fabric link packet CRC with retry**

DRAM Uncorrectable Error

DRAM Normal Access

Poison

- (A) Cache

Good

- (B) Core

Uncorrectable Error limited to consuming process (A) vs (B)
ADVANCED PACKAGING

- **58mm x 75mm organic package**
- **4 die-to-die Infinity Fabric links/die**
 - 3 connected/die
- **2 SERDES/die to pins**
 - 1/die to “top” (G) and “bottom” (P) links
 - Balanced I/O for 1P, 2P systems
- **2 DRAM-channels/die to pins**

Purpose-built MCM Architecture

<table>
<thead>
<tr>
<th>Die 0</th>
<th>Die 1</th>
<th>Die 2</th>
<th>Die 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCX</td>
<td>CCX</td>
<td>CCX</td>
<td>CCX</td>
</tr>
<tr>
<td>I/O</td>
<td>I/O</td>
<td>I/O</td>
<td>I/O</td>
</tr>
<tr>
<td>DDR</td>
<td>DDR</td>
<td>DDR</td>
<td>DDR</td>
</tr>
<tr>
<td>O/O</td>
<td>O/O</td>
<td>O/O</td>
<td>O/O</td>
</tr>
</tbody>
</table>

G[0-3], P[0-3] : 16 lane high-speed SERDES Links

M[A-H] : 8 x72b DRAM channels

∞∞ : Die-to-Die Infinity Fabric links

CCX: 4Core + L2/core + shared L3 complex
MCM VS. MONOLITHIC

- MCM approach has many advantages
 - Higher yield, enables increased feature-set
 - Multi-product leverage

- EPYC™ Processors
 - 4x 213mm\(^2\) die/package = 852mm\(^2\) Si/package*
- Hypothetical EPYC Monolithic
 - \(~777mm^2\)*
 - Remove die-to-die Infinity Fabric PHYs and logic (4/die), duplicated logic, etc.
 - 852mm\(^2\) / 777mm\(^2\) = \(~10\%\) MCM area overhead

- Inverse-exponential reduction in yield with die size
 - Multiple small dies has inherent yield advantage

MCM Delivers Higher Yields, Increases Peak Compute, Maximizes Platform Value

32C Die Cost
1.0X

32C Die Cost
0.59X\(^1\)

* Die sizes as used for Gross-Die-Per-Wafer
INFINITY FABRIC: ARCHITECTURE

- **Infinity Fabric**
 - Data and Control plane connectivity within-die, between-die, between packages
 - Physical layer, protocol layer

- **Revamped internal architecture for low latency, scalability, extensibility**
 - Cross-product leverage for differentiated solutions

- **2 Planes**
 - Scalable Control Fabric: SCF
 - **Scalable Data Fabric: SDF**
 - Strong data and control backbone for enhanced features
INFINITY FABRIC: MEMORY SYSTEM

- 8 DDR4 channels per socket
- Up to 2 DIMMs per channel, 16 DIMMs per socket
- Up to 2667MT/s, 21.3GB/s, 171GB/s per socket
 - Achieves 145GB/s per socket, 85% efficiency*
- Up to 2TB capacity per socket (8Gb DRAMs)
- Supported memory
 - RDIMM
 - LRDIMM
 - 3DS DIMM
 - NVDIMM-N

Optimized Memory Bandwidth and Capacity per Socket
INFINITY FABRIC: DIE-TO-DIE INTERCONNECT

- Fully connected Coherent Infinity Fabric
- Optimized low power, low latency MCM links
- 42GB/sec bi-dir bandwidth per link, ~2pJ/bit TDP
- Single-ended, low power zero transmission
- Achieves 145GB/s DRAM bandwidth/socket STREAM TRIAD*
 - 171GB/s peak bisection BW; ~2x required
 - Overprovisioned for performance scaling

Latency of Isolated Request vs. System DRAM Bandwidth, DRAM Page Miss*
1-Socket, RD-only Traffic, SMT Off, All cores active

Purpose-built MCM Links, Over-provisioned Bandwidth

"NUMA Unaware"
"NUMA Typical"
"NUMA Friendly"
INFINITY DATA FABRIC: COHERENCE SUBSTRATE

- Enhanced Coherent HyperTransport
- 7-state coherence protocol: MDOEFSI
 - D: Dirty, migratory sharing optimization
- Probe Filter
 - SRAM-based for minimum indirection latency
 - No-probe, directed-probe, multi-cast probe, and broadcast probe flows
 - Probe response combining

- Coherence substrate key for performance scaling
 - Requester = Source CCX, Home = Coherence Controller (co-located with DRAM), Target = Caching CCX

Processor Cache Fill Request Flows

Request Flow Diagram:

Uncached

- (R)requester
- (H)ome
- (T)arget
- (SW) = Switch

Directed Probe

- Requester (R) to Home (H) via Switch (SW)
- T0, T1, T2 represent different paths

Multi-Cast Probe

- Multi-cast probe flows across multiple targets

Critical Path

- Critical path from Requester to Target

Non-Critical Path

- Non-critical path from Requester to Home
I/O SUBSYSTEM

- 8 x16 links available in 1 and 2 socket systems
 - Link bifurcation support; max of 8 PCIe® devices per x16
 - Socket-to-Socket Infinity Fabric, PCIe, and SATA support
- 32GB/s bi-dir bandwidth per link, 256GB/s per socket
- PCIe Features*
 - Advanced Error Reporting (AER)
 - Enhanced Downstream Port Containment (eDPC)
 - Non-Transparent Bridging (NTB)
 - Separate RefClk with Independent Spread support (SRIS)
 - NVMe and Hot Plug support
 - Peer-to-peer support
- Integrated SATA support

* = See PCI-SIG for details

Architected for Massive I/O Systems with Leading-edge Feature Set, Platform Flexibility
EPYC™—1P I/O CAPABILITY

- 128 PCIe® links/processor
 - Removes PCIe switches
- All links can be used for I/O
 - Links are Infinity Fabric, PCIe, and SATA capable
- 4 I/O-hubs/processor
- PCIe peer-to-peer (P2P) support
- 8 DRAM channels + 16 DIMMs
- 32 Cores/system for I/O and compute balance
 - Strong I/O connectivity and bandwidth with single high-performance CPU

Massive 1P I/O Connectivity for Accelerators or High-Speed Storage
EPYC™ — 1P I/O PERFORMANCE

- High bandwidth, high efficiency PCIe®
 - Local DMA, Peer-to-Peer (P2P)

- High performance storage
 - ~285K IOPs/Core with 32 cores
 - 1P direct-connect 24 drives x4 (no PCIe switches)

<table>
<thead>
<tr>
<th>DMA</th>
<th>Achieved 1x16 PCIe Bandwidth* (Efficiency vs 16GB/s per direction)</th>
<th>Local DRAM (GBs / Efficiency¹)</th>
<th>Die-to-Die Infinity Fabric (1-hop) (GBs / Efficiency¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>12.2 / 76%</td>
<td>12.1 / 76%</td>
<td></td>
</tr>
<tr>
<td>Write</td>
<td>13.0 / 81%</td>
<td>14.2 / 88%</td>
<td></td>
</tr>
<tr>
<td>Read + Write</td>
<td>22.8 / 71%</td>
<td>22.6 / 70%</td>
<td></td>
</tr>
<tr>
<td>P2P Write</td>
<td>NA</td>
<td>13.6 / 85%</td>
<td></td>
</tr>
</tbody>
</table>

EPYC™ 7601 1P
16 x Samsung pm1725a NVMe, Ubuntu 17.04, FIO v2.16, 4KB 100% Read Results

9.2M IOPs*

High Performance I/O and Storage

1: Peak efficiency of PCIe is ~85%-95% due to protocol overheads
POWER: PERFORMANCE-DETERMINISM, POWER-DETERMINISM, CONFIGURABLE TDP

- Server systems and environments vary
- Silicon varies
 - Faster / higher leakage parts
 - Slower / lower leakage parts
- Some customers demand repeatable, deterministic performance for all environments
 - In this mode, power consumption will vary
- Others may want maximum performance with fixed power consumption
 - In this mode, performance will vary
- EPYC™ CPUs allow boot-time choice of either mode
- EPYC allows configurable TDP for TCO and peak performance vs performance/Watt optimization

Normalized Performance and Power

Perf Determinism Mode

- **Power**
 - Max ➔ System and Silicon Margin ➔ Min
- **Performance**
 - Max ➔ System and Silicon Margin ➔ Min

Product TDP

<table>
<thead>
<tr>
<th>Product TDP</th>
<th>Low range</th>
<th>High range</th>
</tr>
</thead>
<tbody>
<tr>
<td>180W</td>
<td>165W</td>
<td>200W</td>
</tr>
<tr>
<td>155W</td>
<td>135W</td>
<td>170W</td>
</tr>
<tr>
<td>120W</td>
<td>105W</td>
<td>120W</td>
</tr>
</tbody>
</table>
PER-CORE LINEAR VOLTAGE REGULATION

- Running all dies/cores at the voltage required by the slowest wastes power
- Per-core voltage regulator capabilities enable each core’s voltage to be optimized
 - Significant core power savings and variation reduction
DELIVERED CPU PERFORMANCE

- Memory bandwidth and scaling
 - 97% Bandwidth scaling 1P->2P
 - Bandwidth for Disruptive 1P and 2P performance

- INT and FP performance
 - Memory bandwidth for demanding FP applications
 - Compiler-neutral 47% 2P Integer performance improvement

EPYC™ Processors Deliver Compelling Performance and Memory Bandwidth

<table>
<thead>
<tr>
<th>Optimizing Compiler (See endnotes for calculations)</th>
<th>AMD EPYC 7601 64 CORES, 2.2 GHz, Open64</th>
<th>INTEL XEON E5-2699A V4 44 CORES, 2.4 GHz, ICC</th>
<th>EPYC Uplift</th>
</tr>
</thead>
<tbody>
<tr>
<td>2P SPECINT®_RATE2006</td>
<td>2360</td>
<td>1890</td>
<td>25%</td>
</tr>
<tr>
<td>2P SPECFP®_RATE2006</td>
<td>1840</td>
<td>1160</td>
<td>59%</td>
</tr>
<tr>
<td>1P SPECINT®_RATE2006</td>
<td>1200</td>
<td>909</td>
<td>32%</td>
</tr>
<tr>
<td>1P SPECFP®_RATE2006</td>
<td>943</td>
<td>568</td>
<td>66%</td>
</tr>
</tbody>
</table>

Stream Memory Bandwidth (EPYC 7601 1P/2P vs E5-2690V4 2P)

<table>
<thead>
<tr>
<th></th>
<th>TRIAD</th>
<th>TRIAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1P</td>
<td>146%*</td>
<td></td>
</tr>
<tr>
<td>2P</td>
<td>24%*</td>
<td>97%</td>
</tr>
</tbody>
</table>

Standard Compiler (GCC-O2)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2P</td>
<td>47%</td>
<td></td>
</tr>
</tbody>
</table>
AMD EPYC™ 7000 SERIES PROCESSOR

Architected for Enterprise and Datacenter Server TCO
Up to 32 High-Performance “Zen” Cores
8 DDR4 Channels per CPU
Up to 2TB Memory per CPU
128 PCIe® Lanes
Dedicated Security Subsystem
Integrated Chipset for 1-Chip Solution
Socket-Compatible with Next Gen EPYC Processors
GLOSSARY OF TERMS

“Bulldozer” = AMD’s previous family of high performance CPU cores

CCX = Tightly Coupled Core + Cache Complex
 4Core + L2 cache/core + Shared L3 cache complex

CLGI = Clear Global Interrupt

DIMM = Dual Inline Memory Module

ECC = Error Checking and Correcting
 SEC-DED = Single Error Correct, Double Error Detect
 DEC-TED = Double Error Correct, Triple Error Detect

GPU = Graphics Processing Unit

IPC = Instructions Per Clock

LDO = Low Drop Out, a linear voltage regulator

MCM = Multi-Chip Module

NUMA = Non-Uniform Memory Architecture

OS = Operating System

Post Package Repair = Utilize internal DRAM array redundancy to map out errant locations

PSP = Platform Security Processor

RAS = Reliability, Availability, Serviceability

SATA = Serial ATA device connection

SCH = Server Controller Hub

SCM = Single Chip Module

Scrubbing = Searching for, and proactively correcting, ECC errors

SERDES = Serializer/Deserializer

STGI = Set Global Interrupt

TCO = Total Cost of Ownership

TDP = Thermal Design Power

Topology Reporting = Describing cache and memory layout via ACPI/Software structures for OS/Hypervisor task scheduling optimization

VM = Virtual Machine

VRM = Voltage Regulator Module

World Switch = Switch between Guest Operating System and Hypervisor
Updated Feb 28, 2017: Generational IPC uplift for the “Zen” architecture vs. “Piledriver” architecture is +52% with an estimated SPECint_base2006 score compiled with GCC 4.6 –O2 at a fixed 3.4GHz. Generational IPC uplift for the “Zen” architecture vs. “Excavator” architecture is +64% as measured with Cinebench R15, and also +64% with an estimated SPECint_base2006 score compiled with GCC 4.6 –O2, at a fixed 3.4GHz. System configs: AMD reference motherboard(s), AMD Radeon™ R9 290X GPU, 8GB DDR4-2667 (“Zen”)/8GB DDR3-2133 (“Excavator”)/8GB DDR3-1866 (“Piledriver”), Ubuntu Linux 16.x (SPECint_base2006 estimate) and Windows® 10 x64 RS1 (Cinebench R15). SPECint_base2006 estimates: “Zen” vs. “Piledriver” (31.5 vs. 20.7 | +52%), “Zen” vs. “Excavator” (31.5 vs. 19.2 | +64%). Cinebench R15 1t scores: “Zen” vs. “Piledriver” (139 vs. 79 both at 3.4G | +76%), “Zen” vs. “Excavator” (160 vs. 97.5 both at 4.0G) +64%). GD-108

Based on AMD internal yield model using historical defect density data for mature technologies.

In AMD internal testing on STREAM Triad, 2 x EPYC 7601 CPU in AMD “Ethanol” reference system, Ubuntu 16.04, Open64 v4.5.2.1 compiler suite, 512 GB (16 x 32GB 2Rx4 PC4-2666) memory, 1 x 500 GB SSD scored 290. NAP-22

In AMD internal testing on STREAM Triad, 2 x EPYC 7601 CPU in AMD “Ethanol” reference system, Ubuntu 16.04, Open64 v4.5.2.1 compiler suite, 512 GB (16 x 32GB 2Rx4 PC4-2666) memory, 1 x 500 GB SSD scored 290. NAP-22

AMD testing conducted by AMD Performance Labs on an AMD Grandstand reference platform configured with 2 x EPYC 7601 processors fixed at 2.2 GHz, 16 x 32GB DDR4 2666MHz DIMMs, Ethanol BIOS version “TSW1000C” and Ubuntu Server 16.04.2 LTS-kernel 4.10.0-22. Using AMD internal loaded latency test and estimations with 1 latency thread per die, and 7 load threads per die (1 thread per core). Loaded latencies are based on targeting all threads to their local memory access (NUMA Aware), all threads uniformly across remote memory accesses (NUMA Unaware), or a weighted average of these latencies (Typical).

In AMD internal testing on IO Bandwidth benchmarks. 2x EPYC 7601 in AMD “Ethanol” reference systems, BIOS “TDL0080F” (default settings), Ubuntu 15.04.2, 512GB (16 x 32GB 2Rx4 PC4-2666) memory. Read and Write tests used AMD FirePro W7100 GPUs, 256B payload size, Driver “amdgpu-pro version 17.10-450821”. Read + Write tests used Mellanox IB 100Gbps Adapter, 512B payload size, Driver “OFED 3.3.1.04”. Read and Write DMA tests performance using AMD P2P (Peer to Peer) tool. Read + Write DMA tests performance using OFED qperf tool. 1 x EPYC 7601 CPU in HPE Cloudline CL3150, Ubuntu 17.04 4.10 kernel (Scheduler changed to NOOP, CPU governor set to performance), 256 GB (8 x 32GB 2Rx4 PC4-2666) memory, 24 x Samsung pm1725a NVMe drives (with only 16 enabled): FIO v2.16 (4 Jobs per drive, IO Depth of 32, 4K block size) Average Read IOPs 9,178,000 on 100% Read Test (Average BW 35.85 GB/s); FIO (4 jobs per drive, IO depth of 10, 4K block size) Average Write IOPs 7,111,000 on 100% Write Test (Average BW 27.78 GB/s) Each run was done for 30 seconds with a 10 second ramp up using 16 NVMe drives. NAP-24
AMD EPYC™ 7601 CPU-based 2-socket system delivers up to 47% higher performance-for up to 14% less power as Intel Xeon E5-2699A v4-based 2-socket system using estimated SPECint_rate_base2006 results.

AMD EPYC 7601-based 2-socket system scored 1390 (measured wall power 1479W/hr over 3.39 hrs), and Intel E5-2699A v4-based 2-socket system scored 943 (measured wall power 1687W/hr over 3.73 hrs), using estimated scores based on internal AMD testing as of 6 June 2017. 2 x EPYC 7601 CPU in Supermicro AS-1123US-TR4, Ubuntu 16.04, GCC-02 v6.3 compiler suite, 512 GB (16 x 32GB 2Rx4 PC4-2666 running at 2400) memory, 1 x 500 GB SSD; versus 2 x E5-2699A v4 CPU in Intel Server System R1208WT2GSR, Ubuntu 16.04, GCC-02 v6.3 compiler suite, 512 GB (16 x 32GB 2Rx4 PC4-2666 running at 2133) memory, 1 x 500 GB SSD. SPEC and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org. NAP-06

1-socket AMD EPYC 7601 delivers up to 24% more bandwidth than a 2P Intel E5-2690 v4 In AMD internal testing on STREAM Triad, 1 x EPYC 7601 CPU in AMD “Ethanol” reference system, Ubuntu 16.04, Open64 v4.5.2.1 compiler suite, 256 GB (8 x 32GB 2Rx4 PC4-2666) memory, 1 x 500 GB SSD scored 147; versus 2 x E5-2690 v4 CPU in Intel Server System R1208WT2GSR, Ubuntu 16.04, GCC-02 v6.3 compiler, 256 GB (8 x 32GB 2Rx4 PC4-2666 running at 2400) memory, 1 x 500 GB SSD scored 118. NAP-21

2-socket AMD EPYC 7601 delivers up to 146% more memory bandwidth than 2-socket Intel E5-2690 v4 In AMD internal testing on STREAM Triad, 2 x EPYC 7601 CPU in AMD “Ethanol” reference system, Ubuntu 16.04, Open64 v4.5.2.1 compiler suite, 512 GB (16 x 32GB 2Rx4 PC4-2666) memory, 1 x 500 GB SSD scored 290; versus 2 x E5-2690 v4 CPU in Intel Server System R1208WT2GSR, Ubuntu 16.04, GCC-02 v6.3 compiler, 256 GB (8 x 32GB 2Rx4 PC4-2666 running at 2400) memory, 1 x 500 GB SSD scored 118. NAP-22

AMD EPYC™ 7601 CPU-based system scores up to 25% higher than Intel Xeon E5-2699A v4-based system on SPECint_rate2006 AMD EPYC 7601-based system scored 2360 in AMD internal testing, and Intel E5-2699A v4-based system scored 1890 based on www.spec.com as of 29 May 2017. 2 x EPYC 7601 CPU in Supermicro AS-1123US-TR4, Ubuntu 16.04, x86 Open64 v4.5.2.1 Compiler Suite, 512 GB (16 x 32GB 2Rx4 PC4-2666) memory, 1 x 500 GB SSD; versus 2 x E5-2699A v4 CPU in Huawei RH2288H V3, Red Hat Enterprise Linux Server release 7.2, ICC v16.0.0.101 compiler suite, 512 GB (16 x 32GB 2Rx4 PC4-2400T-R) memory, 1 x 1000 GB SATA, 7200. SPEC and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org. NAP-13

AMD EPYC™ 7601 CPU-based system scores up to 59% higher than Intel Xeon E5-2699A v4-based system on SPECfp_rate2006 AMD EPYC 7601-based system scored 1840 in AMD internal testing, and Intel E5-2699A v4-based system scored 1160 based on www.spec.com as of 29 May 2017. 2 x EPYC 7601 CPU in, Supermicro AS-1123US-TR4, Ubuntu 16.04, x86 Open64 v4.5.2.1 Compiler Suite, 512 GB (16 x 32 GB 2Rx4 PC4-2666) memory, 1 x 500 GB SSD; versus 2 x E5-2699A v4 CPU in, Lenovo System x3650 M5, SUSE Linux Enterprise Server 12, ICC v17.0.0.098 compiler suite, 256 GB (16 x 16 GB 2Rx4 PC4-2400T-R), 1 x 800 GB SATA SSD. SPEC and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org. NAP-14
ENDNOTES

SLIDE 21

AMD EPYC 7601-based 1-socket system scored 1200 on SPECint_rate2006, higher than any other traditional 1-socket x86-based system score published at www.spec.org as of 29 May 2017. In AMD internal testing, 1 x EPYC 7601 CPU in HPE Cloudline CL3150, Ubuntu 16.04, x86 Open64 v4.5.2.1 Compiler Suite, 256 GB (8 x 32GB 2Rx4 PC4-2666) memory, 1 x 500 GB SSD scored 1200 on SPECint_rate2006; versus E5-2699 v4-based SuperMicro Storage Server score of 909 published May 2016 at www.spec.org. Record comparison excludes Intel Xeon Phi accelerators. SPEC and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. NAP-09

AMD EPYC™ 7601 CPU-based 2-socket system delivers up to 47% higher performance-for up to 14% less power as Intel Xeon E5-2699A v4-based 2-socket system using estimated SPECint®_rate_base2006 results. AMD EPYC 7601-based 2-socket system scored 1390 (measured wall power 1479Whr over 3.39 hrs), and Intel E5-2699A v4-based 2-socket system scored 943 (measured wall power 1687Whr over 3.73 hrs), using estimated scores based on internal AMD testing as of 6 June 2017. 2 x EPYC 7601 CPU in Supermicro AS-1123US-TR4, Ubuntu 16.04, GCC-02 v6.3 compiler suite, 512 GB (16 x 32GB 2Rx4 PC4-2666 running at 2400) memory, 1 x 500 GB SSD; versus 2 x E5-2699A v4 CPU in Intel Server System R1208WT2GSR, Ubuntu 16.04, GCC-02 v6.3 compiler suite, 512 GB (16 x 32GB 2Rx4 PC4-2666 running at 2133) memory, 1 x 500 GB SSD. SPEC and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org. NAP-06

AMD EPYC 7601-based 1-socket system scored 943 on SPECfp_rate2006, higher than any other 1-socket system score published at www.spec.org as of 29 May 2017. In AMD internal testing, 1 x EPYC 7601 CPU in HPE Cloudline CL3150, Ubuntu 16.04, x86 Open64 v4.5.2.1 Compiler Suite, 256 GB (8 x 32GB 2Rx4 PC4-2666) memory, 1 x 500 GB SSD scored 943 on SPECfp_rate2006; versus E5-2699 v4-based HPE ProLiant ML350 score of 568 published May 2016 at www.spec.org. SPEC and SPECfp are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. NAP-10