A Memory-Efficient Persistent Key-Value Store on eNVM SSDs

Arup De & Zvonimir Bandic

Abstract
Emerging fast byte-addressable non-volatile memory (eNVM) technologies such as ReRAM and 3D Xpoint are projected to offer two orders of magnitude higher performance than flash. However, the existing solid-state drive (SSD) architecture optimizes for flash characteristics and is not adequate to exploit the full potential of eNVMs due to architectural and I/O interface (e.g., PCIe, SATA) limitations. To improve the storage performance and reduce the host main memory requirement for KVS, we propose a novel SSD architecture that extends the semantic of SSD with the KVS features and implements indexing capability inside SSD. It has in-storage processing engine that implements key-value operations such as get, put and delete to efficiently operate on KV datasets. The proposed system introduces a compute channel interface to offload key-value operations down to the SSD that significantly reduces the operating system, file system and other software overhead. This SSD achieves 4.96 Mops/sec get and 3.44 Mops/sec put operations and shows better scalability with increasing number of key-value pairs as compared to flash-based NVMe (flash-NVMe) and DRAM-based NVMe (DRAM-NVMe) devices. With decreasing DRAM size by 75%, its performance decreases gradually, achieving speedup of 3.23x as compared to DRAM-NVMe. This SSD significantly improves performance and reduces memory by exploiting the fine grain parallelism within a controller and keeping data movement local to effectively utilize eNVM bandwidth and eliminating the superfluous data movement between the host and the SSD.

Introduction
• Key-value store is a fundamental building block for many enterprise applications
 – Social Networks
 – Online shopping
 – Inline storage deduplication
• Key-value store
 – Supports simple operations: Get, Put and Delete
 – Preferred over traditional relational DBs for its superior scalability, performance and simplicity
 – Often implemented through an in-memory index structure which points to key-value pairs in storage
 – Popular management solution for large volume of records
• Emerging NVM technologies are very promising
 – Byte-addressable
 – High density
 – Low standby power
 – DRAM-like performance

Challenges
• The existing SSD architecture optimizes for flash characteristics and is not adequate to exploit the full potential of emerging NVM technologies due to architectural and I/O interface (e.g., PCIe, SATA) limitations
• The main memory size imposes a challenging problem in scalability and performance of key-value stores due to relatively slow growth of DRAM capacity as compared to rapidly growing key-value datasets
• Key-value store has random accesses to the storage and the existing memory/storage hierarchy is not adequate for this type of application
 – Cache miss, TLB flush
 – Poor host CPU utilizations
 – Large DRAM usage for caching and metadata management

Results

Conclusion
• Propose a memory-efficient key-value store for next-generation SSDs
• Extended semantic of SSD with key-value store features
• Significantly reduced the host CPU and DRAM usage for key-value data processing
• Demonstrated in a prototype storage system with adequate software and hardware support

© 2017 Western Digital Corporation or its affiliates. All rights reserved