Datacenter FPGA accelerators are mainstream

- MS Catapult, Amazon AWS F1, Intel += Altera, Baidu
- Massively parallel, specialized, connected, versatile
- High throughput, low latency, energy efficient

But two hard problems
- Software: Porting & maintaining workload as accelerator
- Hardware: Compose 100s of cores, 25-100G NICs, many DRAM/HBM channels, with easy timing closure

GRVI Phalanx: FPGA accelerator framework
- GRVI: FPGA-efficient RISC-V processing element
- Phalanx: CPU/accelerator/IO fabric: clusters of PEs, SRAMs, accelerators, DRAM/IO controllers on a ...
- Hoplite NoC: FPGA-optimal directional 2D torus NoC
- Local shared memory, global message passing

Software-first, software-mostly accelerators
- Run your parallel software on 100s of soft processors
- Add custom function units/cores/memories to suit
- More 10 sec recompiles, fewer 10 hr synth/place/route
- Complements high level synthesis & OpenCL—FPGA flows

FPGA soft processor area and energy efficiency
- Simpler CPUs — more CPUs — more memory parallelism
- Jan’s Razor: “In a chip-multiprocessor, cut mesoscale resources from each CPU, to maximize CPUs per die.”
- Share function units in the cluster
- Sweat every LUT

GRVI: cluster RISC-V processing element (PE)
- User mode RV32i, minus all CSRs plus -m mul* (cluster DSP), -A 1/fc (cluster RAM banks)
- 3 pipeline stages (fetch, decode, execute)
- 2 cycle loads; 3 cycle taken branches/jumps
- Painstakingly technology mapped and floorplanned
- Typically 320 LUTs @ 375 MHz = 0.7 MIPS/LUT

Phalanx: many clusters of PEs/accelerator/IOs
- Make it easy to exploit massive FPGA BRAM bandwidth
- Configurable, heterogeneous mixes of clusters
- Interconnected by an extreme bandwidth Hoplite NoC
- PGAS: partitioned global address space
- 32 byte/cycle/cluster message passing between clusters, standalone accelerators, IO and DRAM controllers
- So far, no caches — smaller kernel instruction RAMs and multiported shared clusters for RAMs.
- Planned: “last level” caches at DRAM controller bridges

AWS F1 uses Xilinx Virtex UltraScale+ VU9P
- 1.2M LUTs, 2160 4KB BRAMs, 960 32KB URAMs, 7K DSPs
- A 1680-core GRVI Phalanx on VU9P (above)
- 30+7 clusters of (8 GRVI PEs, 128 KB CRAM, router)
- 1680 cores, 26 MB cluster RAM, 210 300B routers

Running in Xilinx VCU118
- 250 MHz; 420 GIPS; 2.5 Tb/s SRAM; 0.9 Tb NoC; 8 BW
- 31-40 W = 18-24 mW/processor
- 67% of LUTs; 88% of URAM; 39% of BRAM; 12% of DSP
- 1300 BRAMs + 6000 DSPs available for accelerators
- First kilocore RISC-V SoC, most ever 32b RISC PE/chip

Accelerated parallel programming models
- SPMD/MIMD code w/ small kernels, local or PGAS shared memory, message passing, memcpym/DRAM
- Current: multitread C++ with message passing runtime, built with GCC for RISC-V RV32IMA
- Future: OpenCL, ‘Gating gun’ packet processing / P4, message passing / streaming data / KPNs
- Accelerated with plug-in custom FUs, RAMs, AXI cores

Recent work
- AXI & AXI-Stream bridges, Xilinx IP Integrator support
- Zynq PS and DRAM controllers interfacing
- 80-core edu edition for Xilinx Z7020 / PYNQ-Z1 ($65)
- Hoplite NoC auto-segmentation — greater bandwidth

Work in progress
- Target AWS F1.2XL & F1.16XL: add PCIe DMA bridge, 4 DRAM/RDMA/LlC5 chans, inter-FPGA message passing
- Up to 10,000-GRVI Phalanx per F1.16XL instance
- 64-bit GRVI64 to directly address 1.5 TB F1.16XL
- PYNQ-Z1 and F1 kits and general availability

Hoplite: FPGA-optimal 2D torus router and NoC
- Rethink FPGA NoC router architecture
- No segmentation/flits, no VCs, no buffering, no credits
- (Default) deflecting dimension order routing
- Simple 3x2 switch — frugal = ultra wide — high BW
- Configurable routing, link pipelining, multicast

A 400 MHz 4x6x256b Hoplite NoC, 100 Gb/s links, uses 2.7% of KU040

Hoplite router: Xilinx, Intel optimal area-delay
- One LUT/bit/router; one FF-wire-LUT-FF delay/router = 1% of area = delay prior FPGA-optimized VC routers
- Featherweight router-client interface — zero LUTs/bit
- 8b-1024b wide = 4-400 Gb/s links = Tb/s bisec BW
- Perfect for Intel HyperFlex pipelined interconnect
- Everything is interconnected / IP site doesn’t matter much

Jan Gray | Gray Research LLC | Bellevue, WA | jan@fpga.org | http://fpga.org