ReX: A dNTSC™ Receiver System-on-Chip

Slobodan Simovich, Ivan P. Radivojevic, T. J. Endres, Tom Bentson, Ray Bingham, Tony Blair, Tom Cowling, Mark Eylander, Rory Fagan, Chris Long, Jim Longino, Dan Olson, Rollen Subia, Doug Whitcomb

Dotcast, Inc.
Content

- General overview of the dNTSC™ technology
- dNTSC™ receiver technology
- ReX architecture
- ReX microarchitecture and implementation
- Configurable Stream Processor (CSP)
- Applications of the dNTSC™ technology
- Summary
Datacasting – transfer of data over television

dNTSC™ – technology for datacasting over analog NTSC television:
 - Up to 4.5Mbit/sec per analog TV channel
 - Receivable within TV station’s A-contour at 10^{-8} bit error rate
 (example: A-contour in Los Angeles - 1.67 million households)

Obtained FCC license for the deployment of dNTSC™ in June 2002

Technology developed and productized: modulator, receiver, antenna (for indoor reception)

Commercial service based on dNTSC™ technology – the MovieBeam™ Service by Walt Disney Corp., scheduled for deployment later this year
- Visual data is modulated in quadrature with NTSC visual carrier and aural data is negative amplitude modulated on aural carrier - first implementation uses visual carrier, only

- Data inserted coherent with NTSC framing – symbol rate ~613KHz

- Data spectrum is pre-filtered and subcarrier carefully spaced to minimize visual impairment with NTSC television
Receive DSP Architecture

- Downconversion, Decimation, and I/Q split
- Coarse Carrier Recovery
- Algorithm implemented in software
- Video Sync Processing
- Feedforward Automatic Gain Control
- Fine Carrier Recovery
- Data Isolation
- Adaptive Data Equalization, Video Cancellation, and Joint Controller
- Feedback Automatic Gain Control
- Data Framer
- Forward Error Correction
- ReX Receiver Chip

Algorithm implemented in software

© 2003 Dotcast Inc. - All Rights Reserved - Confidential Document
DSP Architectural Features:

- **Visual subcarrier only, 1-3 Mbps, using 4,16,32, 64, or 128 QAM on single subcarrier that is about –26 dB below video (relative to peak of video)**
- **Data spectrum occupies about 1/6 of TV channel, without perceptibly corrupting TV broadcast**
- **Timing recovery, automatic gain control, and data framing derived from visual TV signal**
- **Patent pending adaptive equalization and video cancellation techniques for robust (re)-acquisition in harsh indoor environment**
- **Self-optimizing joint controller (patent pending) for optimum system-level performance is highly programmable with performance-driving features**
- **Field-proven error correction using concatenated Trellis Coded Modulation and a Reed-Solomon block code**
Design Requirements:

- *Functional robustness* – must handle a wide variety of known and less-known phenomena in the field

- *High computational performance* – the dNTSC decoding algorithm alone requires >15 billion operations/sec (BOPS)

- *Low cost* – targeted to fit within a budget of a consumer electronics product.
ReX ASIC Architecture

ASIC Design Philosophy:

- Simplicity
- Configurability and Programmability
- Low-risk fabrication technology

Implementation Goal: design a robust and reliable mass production part (on a tight schedule, of course)
System-on-Chip:

- **CPU Subsystem** – system administrative functions: system I/O, system interrupts, selected DSP applications

- **DSP Subsystem** – dNTSC™ decoding algorithm, FEC, general signal processing
CPU Subsystem:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon Technology</td>
<td>NEC’s CB-10 (0.25 micron, 5 metal layer)</td>
</tr>
<tr>
<td>CPU core</td>
<td>NU85E (NEC)</td>
</tr>
<tr>
<td>System Interface</td>
<td>PCI, I2C, GPIO, MPEG Serial</td>
</tr>
<tr>
<td>Tuner Interface</td>
<td>I2C</td>
</tr>
<tr>
<td>Clock speed</td>
<td>160/80 MHz</td>
</tr>
<tr>
<td>On-chip SRAM</td>
<td>128 KByte</td>
</tr>
<tr>
<td>On-chip ROM</td>
<td>16 KByte</td>
</tr>
<tr>
<td>Instruction/Data Cache</td>
<td>8/4 KByte</td>
</tr>
<tr>
<td>Debug Support</td>
<td>N-Wire/JTAG</td>
</tr>
<tr>
<td>External Memory Support</td>
<td>ROM, FLASH, SRAM</td>
</tr>
<tr>
<td>OS</td>
<td>ThreadX</td>
</tr>
</tbody>
</table>

Note: CPU Subsystem is ~1/3 of the die area
DSP Subsystem:

- Bus-based system - D-bus
- D-bus agents:
 - Dedicated programmable - FIRs, mixers, FEC, etc.
 - Fully programmable –CSP
- Connectivity: D-bus, and dedicated connections

Note: DSP Subsystem is ~2/3 of the die area
Configurable Stream Processor – CSP:

- Proprietary general-purpose DSP core (patent pending) optimized for processing of data streams
 - ISA consists of scalar and vector instructions - implies scalar and vector registers
 - Configurable and programmable hardware buffers
 - Input/output data stream transfer in parallel with pipe accesses
 - Explicit and implicit buffer synchronization mechanisms
CSP Pipe:

- 52 instructions (scalar, vector, bit-wise, push/pop, etc.)
 - 8-stage pipe
 - 3 memory segments:
 - CSEG (code)
 - GDSEG (buffers)
 - LDSEG (data)
 - Configurable buffers - number and size
 - Interrupt support
Programmable Buffers:

Programmable number of buffers - 1 to 16
- Programmable buffer size – 128, 256, 512, 1K locations
- A vector register (or, a vector) is a portion of a buffer – vector length is programmable
- Vectors are accessed via vector instructions
- Implicit process synchronization - vector instruction will not start “on an empty vector”

Input data supplied via DMA input channel

- Coefficients loaded by the master CPU or initialized under CSP program control

Conceptual view of Vector Multiplication

\[V_2 = V_0 \times V_1 \]

\(i=0\ldots3 \)

(V1 is a constant vector)
CSP Multiprocessing

CSP_1 → CSP_2 → CSP_3 → CSP_4

CSP_5 → CSP_6

DMA → CSP_7

C x V_1

Multiply

DMA → CSP_8

C x V_1 x V_2

Multiply

Write Ptr

Read Ptr

Write Ptr

Read Ptr
Vital statistics:

- 0.25 micron (NEC)
- 5 metal layers
- ~3M gates
- 12.5mm x 12.5mm
- 160MHz max freq
- 352TBGA package
- taped out: 12/02
- productized: 3/03
- in the box: 5/03
- in the field: 7/03
Applications of dNTSC™

ReX-based wireless set-top box
dNTSC™ broadcast pipe delivers over 25GByte of raw media assets per day *per antenna*.

dNTSC™ is piggybacked on the existing TV infrastructure => extremely low cost distribution channel
dNTSC™ – technology for datacasting over analog NTSC television supporting up to 4.5Mbit/sec @ 10⁻⁸ BER within TV station’s A contour

ReX – first ASIC implementation of the dNTSC™ receiver technology supporting up to 3Mbit/sec over visual subcarrier

dNTSC™ decoding algorithm implemented in ReX as a combination of dedicated- and fully-programmable processing elements (CSPs)

Configurable Stream Processor (CSP) – general-purpose DSP core optimized for stream processing applications

ReX productized and will be used in a consumer device scheduled for commercial deployment in 2003 – Disney’s MovieBeam™ Service
www.dotcast.com

Dotcast Inc.
20425 72nd Avenue South, Suite 200
Kent, Washington 98032 U.S.A.
253-867-2000

email: info@dotcast.com